Consistency examination of linear inequality system
Mathematica Applicanda, Tome 26 (1997) no. 40, pp. 83-87.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

An investigation of the consistency of a linear inequality system is considered. It is proven that the system of linear inequalities Ax≥b is consistent if and only if for any generalized inverse A− of a matrix A the system of equations (I−AA−)v=−(I−AA−)b has a nonnegative solution for the vector v. Consistency of the above system does not depend on the choice of the matrix A−. The paper also presents methods for investigating the existence of nonnegative solutions of systems of linear equations.
DOI : 10.14708/ma.v26i40.1859
Classification : 15A39
Mots-clés : Linear inequalities
@article{10_14708_ma_v26i40_1859,
     author = {Henryk Brzeskwiniewicz and Krzysztof K{\l}aczy\'nski},
     title = {Consistency examination of linear inequality system},
     journal = {Mathematica Applicanda},
     pages = { 83--87},
     publisher = {mathdoc},
     volume = {26},
     number = {40},
     year = {1997},
     doi = {10.14708/ma.v26i40.1859},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v26i40.1859/}
}
TY  - JOUR
AU  - Henryk Brzeskwiniewicz
AU  - Krzysztof Kłaczyński
TI  - Consistency examination of linear inequality system
JO  - Mathematica Applicanda
PY  - 1997
SP  -  83
EP  - 87
VL  - 26
IS  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v26i40.1859/
DO  - 10.14708/ma.v26i40.1859
LA  - pl
ID  - 10_14708_ma_v26i40_1859
ER  - 
%0 Journal Article
%A Henryk Brzeskwiniewicz
%A Krzysztof Kłaczyński
%T Consistency examination of linear inequality system
%J Mathematica Applicanda
%D 1997
%P  83-87
%V 26
%N 40
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v26i40.1859/
%R 10.14708/ma.v26i40.1859
%G pl
%F 10_14708_ma_v26i40_1859
Henryk Brzeskwiniewicz; Krzysztof Kłaczyński. Consistency examination of linear inequality system. Mathematica Applicanda, Tome 26 (1997) no. 40, pp.  83-87. doi : 10.14708/ma.v26i40.1859. http://geodesic.mathdoc.fr/articles/10.14708/ma.v26i40.1859/

Cité par Sources :