Most powerful robust tests or robust most powerful tests
Mathematica Applicanda, Tome 24 (1995) no. 38, pp. 113-117.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

The most powerful robust test and the robust most powerful test in a simple Gaussian model are constructed and discussed.
DOI : 10.14708/ma.v24i38.1838
Classification : 62F35 (62F03)
Mots-clés : Robustness and adaptive procedures, Hypothesis testing
@article{10_14708_ma_v24i38_1838,
     author = {Ryszard Zieli\'nski},
     title = {Most powerful robust tests or robust most powerful tests},
     journal = {Mathematica Applicanda},
     pages = { 113--117},
     publisher = {mathdoc},
     volume = {24},
     number = {38},
     year = {1995},
     doi = {10.14708/ma.v24i38.1838},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v24i38.1838/}
}
TY  - JOUR
AU  - Ryszard Zieliński
TI  - Most powerful robust tests or robust most powerful tests
JO  - Mathematica Applicanda
PY  - 1995
SP  -  113
EP  - 117
VL  - 24
IS  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v24i38.1838/
DO  - 10.14708/ma.v24i38.1838
LA  - pl
ID  - 10_14708_ma_v24i38_1838
ER  - 
%0 Journal Article
%A Ryszard Zieliński
%T Most powerful robust tests or robust most powerful tests
%J Mathematica Applicanda
%D 1995
%P  113-117
%V 24
%N 38
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v24i38.1838/
%R 10.14708/ma.v24i38.1838
%G pl
%F 10_14708_ma_v24i38_1838
Ryszard Zieliński. Most powerful robust tests or robust most powerful tests. Mathematica Applicanda, Tome 24 (1995) no. 38, pp.  113-117. doi : 10.14708/ma.v24i38.1838. http://geodesic.mathdoc.fr/articles/10.14708/ma.v24i38.1838/

Cité par Sources :