Random division of interval.
Mathematica Applicanda, Tome 22 (1993) no. 36, pp. 71-74.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Let L1,L2,...,Ln+1 be the lengths of subintervals created by division of the interval [0,t] by n randomly and independently selected points of this interval. B. de Finetti (1964) proved that F(t;a1,⋯,an+1)=P({L1>a1,⋯,Ln+1>an+1})=t^(−n)(t−a1−...−an+1)^n, where ai≥0,i=1,...,n+1, and a1+...+an+1
DOI : 10.14708/ma.v22i36.1817
Classification : 60D05
Mots-clés : Geometric probability and stochastic geometry
@article{10_14708_ma_v22i36_1817,
     author = {Krzysztof Wisi\'nski},
     title = {Random division of interval.},
     journal = {Mathematica Applicanda},
     pages = { 71--74},
     publisher = {mathdoc},
     volume = {22},
     number = {36},
     year = {1993},
     doi = {10.14708/ma.v22i36.1817},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v22i36.1817/}
}
TY  - JOUR
AU  - Krzysztof Wisiński
TI  - Random division of interval.
JO  - Mathematica Applicanda
PY  - 1993
SP  -  71
EP  - 74
VL  - 22
IS  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v22i36.1817/
DO  - 10.14708/ma.v22i36.1817
LA  - pl
ID  - 10_14708_ma_v22i36_1817
ER  - 
%0 Journal Article
%A Krzysztof Wisiński
%T Random division of interval.
%J Mathematica Applicanda
%D 1993
%P  71-74
%V 22
%N 36
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v22i36.1817/
%R 10.14708/ma.v22i36.1817
%G pl
%F 10_14708_ma_v22i36_1817
Krzysztof Wisiński. Random division of interval.. Mathematica Applicanda, Tome 22 (1993) no. 36, pp.  71-74. doi : 10.14708/ma.v22i36.1817. http://geodesic.mathdoc.fr/articles/10.14708/ma.v22i36.1817/

Cité par Sources :