Nonlinear optimal control problem with constraints for general 2-D systems
Mathematica Applicanda, Tome 22 (1993) no. 36, pp. 41-53.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this paper a optimal, nonlinear problem for general two-dimensional, stationary, discrete systems is presented. The state and control vectors are subject to restrictions in this optimal problem. Using a method of transformation for the system and the performance index, the problem of finding the optimal sequence of control vectors is solved by a method of ma-thematical programming. The necessary conditions are formulated. The simple numerical example illustrates the presented method.
DOI : 10.14708/ma.v22i36.1815
Classification : 49K15 (93C55)
Mots-clés : Problems involving ordinary differential equations, Discrete-time systems
@article{10_14708_ma_v22i36_1815,
     author = {Barbara Bi{\l}y},
     title = {Nonlinear optimal control problem with constraints for general {2-D} systems},
     journal = {Mathematica Applicanda},
     pages = { 41--53},
     publisher = {mathdoc},
     volume = {22},
     number = {36},
     year = {1993},
     doi = {10.14708/ma.v22i36.1815},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v22i36.1815/}
}
TY  - JOUR
AU  - Barbara Biły
TI  - Nonlinear optimal control problem with constraints for general 2-D systems
JO  - Mathematica Applicanda
PY  - 1993
SP  -  41
EP  - 53
VL  - 22
IS  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v22i36.1815/
DO  - 10.14708/ma.v22i36.1815
LA  - pl
ID  - 10_14708_ma_v22i36_1815
ER  - 
%0 Journal Article
%A Barbara Biły
%T Nonlinear optimal control problem with constraints for general 2-D systems
%J Mathematica Applicanda
%D 1993
%P  41-53
%V 22
%N 36
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v22i36.1815/
%R 10.14708/ma.v22i36.1815
%G pl
%F 10_14708_ma_v22i36_1815
Barbara Biły. Nonlinear optimal control problem with constraints for general 2-D systems. Mathematica Applicanda, Tome 22 (1993) no. 36, pp.  41-53. doi : 10.14708/ma.v22i36.1815. http://geodesic.mathdoc.fr/articles/10.14708/ma.v22i36.1815/

Cité par Sources :