The Use of Cubic Spline Functions to Two-point Boundary Value Problems
Mathematica Applicanda, Tome 21 (1992) no. 35, pp. 47-56.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this paper we consider an algorithm for cubic spline function approximation of the solution of two-point boundary value problem for second order linear ordinary differential equation. This algorithm requires O(N) arithmetical operations, where N is the number of subdivisions of considered interval. Error bounds for the solution are derived and numerical examples are given.
DOI : 10.14708/ma.v21i35.1793
Classification : 65L10
Mots-clés : Boundary value problem
@article{10_14708_ma_v21i35_1793,
     author = {G. Hobot},
     title = {The {Use} of {Cubic} {Spline} {Functions} to {Two-point} {Boundary} {Value} {Problems}},
     journal = {Mathematica Applicanda},
     pages = { 47--56},
     publisher = {mathdoc},
     volume = {21},
     number = {35},
     year = {1992},
     doi = {10.14708/ma.v21i35.1793},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v21i35.1793/}
}
TY  - JOUR
AU  - G. Hobot
TI  - The Use of Cubic Spline Functions to Two-point Boundary Value Problems
JO  - Mathematica Applicanda
PY  - 1992
SP  -  47
EP  - 56
VL  - 21
IS  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v21i35.1793/
DO  - 10.14708/ma.v21i35.1793
LA  - pl
ID  - 10_14708_ma_v21i35_1793
ER  - 
%0 Journal Article
%A G. Hobot
%T The Use of Cubic Spline Functions to Two-point Boundary Value Problems
%J Mathematica Applicanda
%D 1992
%P  47-56
%V 21
%N 35
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v21i35.1793/
%R 10.14708/ma.v21i35.1793
%G pl
%F 10_14708_ma_v21i35_1793
G. Hobot. The Use of Cubic Spline Functions to Two-point Boundary Value Problems. Mathematica Applicanda, Tome 21 (1992) no. 35, pp.  47-56. doi : 10.14708/ma.v21i35.1793. http://geodesic.mathdoc.fr/articles/10.14708/ma.v21i35.1793/

Cité par Sources :