Multigrid method for numerical solution of ordinary differential equations
Mathematica Applicanda, Tome 21 (1992) no. 35, pp. 37-45
Cet article a éte moissonné depuis la source Annales Societatis Mathematicae Polonae Series
We consider the initial value problem for systems of ordinary differential equations such that the solution vector can be split into subvectors and each subvector represented as a product of a scalar amplitude and a shape vector which changes slowly with time. The equations for the shape vectors can be solved with much larger time steps than those required for the original equations. The numerical results show that a substantial reduction in the computing time may be achieved
@article{10_14708_ma_v21i35_1792,
author = {J. M. Kozakiewicz and J. R. Mika},
title = {Multigrid method for numerical solution of ordinary differential equations},
journal = {Mathematica Applicanda},
pages = { 37--45},
year = {1992},
volume = {21},
number = {35},
doi = {10.14708/ma.v21i35.1792},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v21i35.1792/}
}
TY - JOUR AU - J. M. Kozakiewicz AU - J. R. Mika TI - Multigrid method for numerical solution of ordinary differential equations JO - Mathematica Applicanda PY - 1992 SP - 37 EP - 45 VL - 21 IS - 35 UR - http://geodesic.mathdoc.fr/articles/10.14708/ma.v21i35.1792/ DO - 10.14708/ma.v21i35.1792 LA - pl ID - 10_14708_ma_v21i35_1792 ER -
%0 Journal Article %A J. M. Kozakiewicz %A J. R. Mika %T Multigrid method for numerical solution of ordinary differential equations %J Mathematica Applicanda %D 1992 %P 37-45 %V 21 %N 35 %U http://geodesic.mathdoc.fr/articles/10.14708/ma.v21i35.1792/ %R 10.14708/ma.v21i35.1792 %G pl %F 10_14708_ma_v21i35_1792
J. M. Kozakiewicz; J. R. Mika. Multigrid method for numerical solution of ordinary differential equations. Mathematica Applicanda, Tome 21 (1992) no. 35, pp. 37-45. doi: 10.14708/ma.v21i35.1792
Cité par Sources :