The power method for the generalized eigenvalue problem
Mathematica Applicanda, Tome 21 (1992) no. 35, pp. 21-32.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this paper the Power Method for the generalized eigenvalue problem for matrix pencil (A—B)x=0 is considered. At any step of this iterative process the system of linear algebraic equations By—Ax has to be approximately solved with respect to y. We try to answer the question: how accurately we have to solve this system on each step of iteration,in order to guarantee resolution of the eigenproblem with given precision.
DOI : 10.14708/ma.v21i35.1790
Classification : 65F15 (15A18)
Mots-clés : Eigenvalues, eigenvectors
@article{10_14708_ma_v21i35_1790,
     author = {W. Koz{\l}owski},
     title = {The power method for the generalized eigenvalue problem},
     journal = {Mathematica Applicanda},
     pages = { 21--32},
     publisher = {mathdoc},
     volume = {21},
     number = {35},
     year = {1992},
     doi = {10.14708/ma.v21i35.1790},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v21i35.1790/}
}
TY  - JOUR
AU  - W. Kozłowski
TI  - The power method for the generalized eigenvalue problem
JO  - Mathematica Applicanda
PY  - 1992
SP  -  21
EP  - 32
VL  - 21
IS  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v21i35.1790/
DO  - 10.14708/ma.v21i35.1790
LA  - pl
ID  - 10_14708_ma_v21i35_1790
ER  - 
%0 Journal Article
%A W. Kozłowski
%T The power method for the generalized eigenvalue problem
%J Mathematica Applicanda
%D 1992
%P  21-32
%V 21
%N 35
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v21i35.1790/
%R 10.14708/ma.v21i35.1790
%G pl
%F 10_14708_ma_v21i35_1790
W. Kozłowski. The power method for the generalized eigenvalue problem. Mathematica Applicanda, Tome 21 (1992) no. 35, pp.  21-32. doi : 10.14708/ma.v21i35.1790. http://geodesic.mathdoc.fr/articles/10.14708/ma.v21i35.1790/

Cité par Sources :