Nonparametric tests for the two-sample location problem
Mathematica Applicanda, Tome 20 (1991) no. 34, pp. 37-57.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Let X1,X2,...,Xm and Y1,Y2,...,Yn be two independent random samples from populations with continuous distribution functions F(x) and G(x)=F(x — ) respectively. In order to test H: =0 against K:A>0 several tests can be used. Thirteen such nonparametric tests are presented here. By means of a sampling study a comparison of these tests are performed. The criteria of the power and the power index was used. Related problems are discussed as well. An algorithm (in Pascal) for computation of the critical level of the Mann-Whitney- Wilcoxon test is given also.
DOI : 10.14708/ma.v20i34.1784
Classification : 62G10
Mots-clés : Hypothesis testing
@article{10_14708_ma_v20i34_1784,
     author = {Przemys{\l}aw Grzegorzewski},
     title = {Nonparametric tests for the two-sample location problem},
     journal = {Mathematica Applicanda},
     pages = { 37--57},
     publisher = {mathdoc},
     volume = {20},
     number = {34},
     year = {1991},
     doi = {10.14708/ma.v20i34.1784},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v20i34.1784/}
}
TY  - JOUR
AU  - Przemysław Grzegorzewski
TI  - Nonparametric tests for the two-sample location problem
JO  - Mathematica Applicanda
PY  - 1991
SP  -  37
EP  - 57
VL  - 20
IS  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v20i34.1784/
DO  - 10.14708/ma.v20i34.1784
LA  - pl
ID  - 10_14708_ma_v20i34_1784
ER  - 
%0 Journal Article
%A Przemysław Grzegorzewski
%T Nonparametric tests for the two-sample location problem
%J Mathematica Applicanda
%D 1991
%P  37-57
%V 20
%N 34
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v20i34.1784/
%R 10.14708/ma.v20i34.1784
%G pl
%F 10_14708_ma_v20i34_1784
Przemysław Grzegorzewski. Nonparametric tests for the two-sample location problem. Mathematica Applicanda, Tome 20 (1991) no. 34, pp.  37-57. doi : 10.14708/ma.v20i34.1784. http://geodesic.mathdoc.fr/articles/10.14708/ma.v20i34.1784/

Cité par Sources :