Algorithm of the best strategy method for hugh systems of the linear equations with symmetric, positively definite matrices
Mathematica Applicanda, Tome 1 (1973) no. 1, pp. 47-68.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In the paper the problem of solution for the system of the linear equations with sparse matrix is considered.
DOI : 10.14708/ma.v1i1.297
Mots-clés : układ równań liniowych, macierz dodatnio określona, macierze rzadkie
@article{10_14708_ma_v1i1_297,
     author = {Andrzej Kie{\l}basi\'nski and Gra\.zyna Wo\'zniakowska},
     title = {Algorithm of the best strategy method for hugh systems of the linear equations with symmetric, positively definite matrices},
     journal = {Mathematica Applicanda},
     pages = { 47--68},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1973},
     doi = {10.14708/ma.v1i1.297},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v1i1.297/}
}
TY  - JOUR
AU  - Andrzej Kiełbasiński
AU  - Grażyna Woźniakowska
TI  - Algorithm of the best strategy method for hugh systems of the linear equations with symmetric, positively definite matrices
JO  - Mathematica Applicanda
PY  - 1973
SP  -  47
EP  - 68
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v1i1.297/
DO  - 10.14708/ma.v1i1.297
LA  - pl
ID  - 10_14708_ma_v1i1_297
ER  - 
%0 Journal Article
%A Andrzej Kiełbasiński
%A Grażyna Woźniakowska
%T Algorithm of the best strategy method for hugh systems of the linear equations with symmetric, positively definite matrices
%J Mathematica Applicanda
%D 1973
%P  47-68
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v1i1.297/
%R 10.14708/ma.v1i1.297
%G pl
%F 10_14708_ma_v1i1_297
Andrzej Kiełbasiński; Grażyna Woźniakowska. Algorithm of the best strategy method for hugh systems of the linear equations with symmetric, positively definite matrices. Mathematica Applicanda, Tome 1 (1973) no. 1, pp.  47-68. doi : 10.14708/ma.v1i1.297. http://geodesic.mathdoc.fr/articles/10.14708/ma.v1i1.297/

Cité par Sources :