Rescaled multilevel least-change almost secant methods
Mathematica Applicanda, Tome 19 (1991) no. 33, pp. 37-56.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this article the theory of local convergence is developed. One of the extensions consists in that the approximations to the Jacobian matrix have the same properties as the same matrix has in the solution. The example shows that this assumption may lead to simpler algorithms. The paper discusses several rescaled multilevel least-change updates for which local g-superlinear convergence is proved. The theory may be applied to a wider class of methods because every secant algorithm may be treated as a rescaled least-change method.
DOI : 10.14708/ma.v19i33.1777
Classification : 65H10 (90C30)
Mots-clés : Systems of equations, Nonlinear programming
@article{10_14708_ma_v19i33_1777,
     author = {S. M. Grzegorski},
     title = {Rescaled multilevel least-change almost secant methods},
     journal = {Mathematica Applicanda},
     pages = { 37--56},
     publisher = {mathdoc},
     volume = {19},
     number = {33},
     year = {1991},
     doi = {10.14708/ma.v19i33.1777},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v19i33.1777/}
}
TY  - JOUR
AU  - S. M. Grzegorski
TI  - Rescaled multilevel least-change almost secant methods
JO  - Mathematica Applicanda
PY  - 1991
SP  -  37
EP  - 56
VL  - 19
IS  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v19i33.1777/
DO  - 10.14708/ma.v19i33.1777
LA  - pl
ID  - 10_14708_ma_v19i33_1777
ER  - 
%0 Journal Article
%A S. M. Grzegorski
%T Rescaled multilevel least-change almost secant methods
%J Mathematica Applicanda
%D 1991
%P  37-56
%V 19
%N 33
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v19i33.1777/
%R 10.14708/ma.v19i33.1777
%G pl
%F 10_14708_ma_v19i33_1777
S. M. Grzegorski. Rescaled multilevel least-change almost secant methods. Mathematica Applicanda, Tome 19 (1991) no. 33, pp.  37-56. doi : 10.14708/ma.v19i33.1777. http://geodesic.mathdoc.fr/articles/10.14708/ma.v19i33.1777/

Cité par Sources :