On solving linear programming problems with embedded network structure
Mathematica Applicanda, Tome 19 (1991) no. 33, pp. 11-35.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

A special partitioning algorithm for solving linear programming problems with embed-ded network structure is presented. As an example of such a problem the minimum-cost network flow problem under additional linear constraints can be considered. This algorithm is a primal simplex basis partitioning method that uses special updating and labeling procedures to accelerate computations involving the network linear programming interface. These procedures are discribed in detail to develop an efficient implementation of the method.
DOI : 10.14708/ma.v19i33.1776
Classification : 90C05
Mots-clés : Linear programming
@article{10_14708_ma_v19i33_1776,
     author = {Krystian Zorychta},
     title = {On solving linear programming problems with embedded network structure},
     journal = {Mathematica Applicanda},
     pages = { 11--35},
     publisher = {mathdoc},
     volume = {19},
     number = {33},
     year = {1991},
     doi = {10.14708/ma.v19i33.1776},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v19i33.1776/}
}
TY  - JOUR
AU  - Krystian Zorychta
TI  - On solving linear programming problems with embedded network structure
JO  - Mathematica Applicanda
PY  - 1991
SP  -  11
EP  - 35
VL  - 19
IS  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v19i33.1776/
DO  - 10.14708/ma.v19i33.1776
LA  - pl
ID  - 10_14708_ma_v19i33_1776
ER  - 
%0 Journal Article
%A Krystian Zorychta
%T On solving linear programming problems with embedded network structure
%J Mathematica Applicanda
%D 1991
%P  11-35
%V 19
%N 33
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v19i33.1776/
%R 10.14708/ma.v19i33.1776
%G pl
%F 10_14708_ma_v19i33_1776
Krystian Zorychta. On solving linear programming problems with embedded network structure. Mathematica Applicanda, Tome 19 (1991) no. 33, pp.  11-35. doi : 10.14708/ma.v19i33.1776. http://geodesic.mathdoc.fr/articles/10.14708/ma.v19i33.1776/

Cité par Sources :