Primary simplex method for flow network
Mathematica Applicanda, Tome 18 (1990) no. 32, pp. 49-62.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

This paper describes an efficient network simplex algorithm for solving minimum-cost network flow problems. The algorithm derives from a theoretical characterization of the network topology of the basis embodied in a specially constructed basis tree. Experimentation with large sparse mini- mum-cost network flow problems has shown that in practice good implemen-tation of the network simplex method is more efficient than other implemen-tations based on special network flow methods.
DOI : 10.14708/ma.v18i32.1737
Classification : 90C35
Mots-clés : Programming involving graphs or networks
@article{10_14708_ma_v18i32_1737,
     author = {Janusz Jab{\l}onowski and Krystian Zorychta},
     title = {Primary simplex method for flow network},
     journal = {Mathematica Applicanda},
     pages = { 49--62},
     publisher = {mathdoc},
     volume = {18},
     number = {32},
     year = {1990},
     doi = {10.14708/ma.v18i32.1737},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v18i32.1737/}
}
TY  - JOUR
AU  - Janusz Jabłonowski
AU  - Krystian Zorychta
TI  - Primary simplex method for flow network
JO  - Mathematica Applicanda
PY  - 1990
SP  -  49
EP  - 62
VL  - 18
IS  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v18i32.1737/
DO  - 10.14708/ma.v18i32.1737
LA  - pl
ID  - 10_14708_ma_v18i32_1737
ER  - 
%0 Journal Article
%A Janusz Jabłonowski
%A Krystian Zorychta
%T Primary simplex method for flow network
%J Mathematica Applicanda
%D 1990
%P  49-62
%V 18
%N 32
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v18i32.1737/
%R 10.14708/ma.v18i32.1737
%G pl
%F 10_14708_ma_v18i32_1737
Janusz Jabłonowski; Krystian Zorychta. Primary simplex method for flow network. Mathematica Applicanda, Tome 18 (1990) no. 32, pp.  49-62. doi : 10.14708/ma.v18i32.1737. http://geodesic.mathdoc.fr/articles/10.14708/ma.v18i32.1737/

Cité par Sources :