H^(-1) Galerkin-collocation method with quadratures for two point boundary value problems
Mathematica Applicanda, Tome 17 (1989) no. 31, pp. 137-166.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In the paper, the H^(-1)Galerkin-collocation method with quadratures (instead of integrals) for two point boundary value problems is considered. Approximate solution is a piecewise polynomial of degree r. It is proved that the method is stable and the error in L2-norm is of order O(h^(r+1)) if the used quadrature is exact for polynomial of degree not greater than r+1.
DOI : 10.14708/ma.v17i31.1769
Classification : 65L60 (65L10)
Mots-clés : Finite elements, Rayleigh-Ritz, Galerkin and collocation, Boundary value problems
@article{10_14708_ma_v17i31_1769,
     author = {Zbigniew Leyk},
     title = {H^(-1) {Galerkin-collocation} method with quadratures for two point boundary value problems},
     journal = {Mathematica Applicanda},
     pages = { 137--166},
     publisher = {mathdoc},
     volume = {17},
     number = {31},
     year = {1989},
     doi = {10.14708/ma.v17i31.1769},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v17i31.1769/}
}
TY  - JOUR
AU  - Zbigniew Leyk
TI  - H^(-1) Galerkin-collocation method with quadratures for two point boundary value problems
JO  - Mathematica Applicanda
PY  - 1989
SP  -  137
EP  - 166
VL  - 17
IS  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v17i31.1769/
DO  - 10.14708/ma.v17i31.1769
LA  - pl
ID  - 10_14708_ma_v17i31_1769
ER  - 
%0 Journal Article
%A Zbigniew Leyk
%T H^(-1) Galerkin-collocation method with quadratures for two point boundary value problems
%J Mathematica Applicanda
%D 1989
%P  137-166
%V 17
%N 31
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v17i31.1769/
%R 10.14708/ma.v17i31.1769
%G pl
%F 10_14708_ma_v17i31_1769
Zbigniew Leyk. H^(-1) Galerkin-collocation method with quadratures for two point boundary value problems. Mathematica Applicanda, Tome 17 (1989) no. 31, pp.  137-166. doi : 10.14708/ma.v17i31.1769. http://geodesic.mathdoc.fr/articles/10.14708/ma.v17i31.1769/

Cité par Sources :