E-optimality of PBB designs with two associate classes
Mathematica Applicanda, Tome 17 (1989) no. 31, pp. 39-46.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this paper, the sufficient condition for the E-optimality of PBB designs with two associate classes is given. This condition is expressed in terms of the parameters of design and their incidence matrix. In particular, the £-optimality criterion for equireplicated designs with binary incidence matrix is given. In this case, we can express the £-optimality criterion in terms of parameters of design only. Finally, we characterized the contrasts of treatment which determine the F-optimality of design.
DOI : 10.14708/ma.v17i31.1763
Classification : 62K05
Mots-clés : Optimal designs
@article{10_14708_ma_v17i31_1763,
     author = {Henryk Brzeskwiniewicz},
     title = {E-optimality of {PBB} designs with two associate classes},
     journal = {Mathematica Applicanda},
     pages = { 39--46},
     publisher = {mathdoc},
     volume = {17},
     number = {31},
     year = {1989},
     doi = {10.14708/ma.v17i31.1763},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v17i31.1763/}
}
TY  - JOUR
AU  - Henryk Brzeskwiniewicz
TI  - E-optimality of PBB designs with two associate classes
JO  - Mathematica Applicanda
PY  - 1989
SP  -  39
EP  - 46
VL  - 17
IS  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v17i31.1763/
DO  - 10.14708/ma.v17i31.1763
LA  - pl
ID  - 10_14708_ma_v17i31_1763
ER  - 
%0 Journal Article
%A Henryk Brzeskwiniewicz
%T E-optimality of PBB designs with two associate classes
%J Mathematica Applicanda
%D 1989
%P  39-46
%V 17
%N 31
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v17i31.1763/
%R 10.14708/ma.v17i31.1763
%G pl
%F 10_14708_ma_v17i31_1763
Henryk Brzeskwiniewicz. E-optimality of PBB designs with two associate classes. Mathematica Applicanda, Tome 17 (1989) no. 31, pp.  39-46. doi : 10.14708/ma.v17i31.1763. http://geodesic.mathdoc.fr/articles/10.14708/ma.v17i31.1763/

Cité par Sources :