The finite difference approximation for the Dirichlet problem with a non-uniform mesh on a boundary
Mathematica Applicanda, Tome 16 (1987) no. 30, pp. 113-123.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

The author describes a construction of the positive difference scheme, which is the approximation of the Dirichlet problem for an elliptic second order equation with mixed derivatives in an arbitrary region in R2. The a priori estimation for the approximate solution is proved and the estimation of the rate of convergence in maximum norm is established.
DOI : 10.14708/ma.v16i30.1702
Classification : 65N05 (65N15)
Mots-clés : Derivation of finite difference approximations, Error bounds
@article{10_14708_ma_v16i30_1702,
     author = {Gra\.zyna Morawiec},
     title = {The finite difference approximation for the {Dirichlet} problem with a non-uniform mesh on a boundary},
     journal = {Mathematica Applicanda},
     pages = { 113--123},
     publisher = {mathdoc},
     volume = {16},
     number = {30},
     year = {1987},
     doi = {10.14708/ma.v16i30.1702},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v16i30.1702/}
}
TY  - JOUR
AU  - Grażyna Morawiec
TI  - The finite difference approximation for the Dirichlet problem with a non-uniform mesh on a boundary
JO  - Mathematica Applicanda
PY  - 1987
SP  -  113
EP  - 123
VL  - 16
IS  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v16i30.1702/
DO  - 10.14708/ma.v16i30.1702
LA  - pl
ID  - 10_14708_ma_v16i30_1702
ER  - 
%0 Journal Article
%A Grażyna Morawiec
%T The finite difference approximation for the Dirichlet problem with a non-uniform mesh on a boundary
%J Mathematica Applicanda
%D 1987
%P  113-123
%V 16
%N 30
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v16i30.1702/
%R 10.14708/ma.v16i30.1702
%G pl
%F 10_14708_ma_v16i30_1702
Grażyna Morawiec. The finite difference approximation for the Dirichlet problem with a non-uniform mesh on a boundary. Mathematica Applicanda, Tome 16 (1987) no. 30, pp.  113-123. doi : 10.14708/ma.v16i30.1702. http://geodesic.mathdoc.fr/articles/10.14708/ma.v16i30.1702/

Cité par Sources :