Asymptotically stable estimators of location and scale parameters I. Estimation of location parameter
Mathematica Applicanda, Tome 16 (1987) no. 30, pp. 65-78.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

A sequence of equivariant estimators of a location parameter, which is asymptotically most robust with respect to bias oscillation function, is derived for two types of disturbances: e-contamination and Kolmogorov-Levy neighbourhoods. The sequence consists of properly chosen order statistics modified by adding a constant. As examples, the most bias-robust estimators for unimodal symmetric, Weibull, double-exponential and beta distributions are presented.
DOI : 10.14708/ma.v16i30.1699
Classification : 62F35
Mots-clés : Robustness and adaptive procedures
@article{10_14708_ma_v16i30_1699,
     author = {Tomasz Rychlik},
     title = {Asymptotically stable estimators of location and scale parameters {I.} {Estimation} of location parameter},
     journal = {Mathematica Applicanda},
     pages = { 65--78},
     publisher = {mathdoc},
     volume = {16},
     number = {30},
     year = {1987},
     doi = {10.14708/ma.v16i30.1699},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v16i30.1699/}
}
TY  - JOUR
AU  - Tomasz Rychlik
TI  - Asymptotically stable estimators of location and scale parameters I. Estimation of location parameter
JO  - Mathematica Applicanda
PY  - 1987
SP  -  65
EP  - 78
VL  - 16
IS  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v16i30.1699/
DO  - 10.14708/ma.v16i30.1699
LA  - pl
ID  - 10_14708_ma_v16i30_1699
ER  - 
%0 Journal Article
%A Tomasz Rychlik
%T Asymptotically stable estimators of location and scale parameters I. Estimation of location parameter
%J Mathematica Applicanda
%D 1987
%P  65-78
%V 16
%N 30
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v16i30.1699/
%R 10.14708/ma.v16i30.1699
%G pl
%F 10_14708_ma_v16i30_1699
Tomasz Rychlik. Asymptotically stable estimators of location and scale parameters I. Estimation of location parameter. Mathematica Applicanda, Tome 16 (1987) no. 30, pp.  65-78. doi : 10.14708/ma.v16i30.1699. http://geodesic.mathdoc.fr/articles/10.14708/ma.v16i30.1699/

Cité par Sources :