Bayesian discrimination method for special covariance structure
Mathematica Applicanda, Tome 13 (1985) no. 26, pp. 119-126.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Let us assume that the observed random vector from population has a p-dimensional normal distribution with a mean vector and a positive definite covariance matrix. A multivariate observation is known and it belongs to one of two multivariate normal populations but it is not known to which. Let E be the pxp matrix with each element eąual to unity and let I be the p x p identity matrix. In the paper we consider a Bayesian discrimination between s.
DOI : 10.14708/ma.v13i26.1651
Classification : 62H30
Mots-clés : Classification and discrimination, cluster analysis
@article{10_14708_ma_v13i26_1651,
     author = {Wies{\l}aw Pasewicz},
     title = {Bayesian discrimination method for special covariance structure},
     journal = {Mathematica Applicanda},
     pages = { 119--126},
     publisher = {mathdoc},
     volume = {13},
     number = {26},
     year = {1985},
     doi = {10.14708/ma.v13i26.1651},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v13i26.1651/}
}
TY  - JOUR
AU  - Wiesław Pasewicz
TI  - Bayesian discrimination method for special covariance structure
JO  - Mathematica Applicanda
PY  - 1985
SP  -  119
EP  - 126
VL  - 13
IS  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v13i26.1651/
DO  - 10.14708/ma.v13i26.1651
LA  - pl
ID  - 10_14708_ma_v13i26_1651
ER  - 
%0 Journal Article
%A Wiesław Pasewicz
%T Bayesian discrimination method for special covariance structure
%J Mathematica Applicanda
%D 1985
%P  119-126
%V 13
%N 26
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v13i26.1651/
%R 10.14708/ma.v13i26.1651
%G pl
%F 10_14708_ma_v13i26_1651
Wiesław Pasewicz. Bayesian discrimination method for special covariance structure. Mathematica Applicanda, Tome 13 (1985) no. 26, pp.  119-126. doi : 10.14708/ma.v13i26.1651. http://geodesic.mathdoc.fr/articles/10.14708/ma.v13i26.1651/

Cité par Sources :