The Kalman filter in the case where exists correlation between noises of the plant and meter
Mathematica Applicanda, Tome 13 (1985) no. 26, pp. 93-117.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

The paper is concerned with a problem of optimal linear filtering in the case where exists correlation between the noises w(k) of the plant and noises v(k) and v(k+1) of the meter. The algorithm obtained contains the classical Kalman's solution and its generalization given by Simkin [5]. The dual problem under these conditions is also considered.
DOI : 10.14708/ma.v13i26.1650
Classification : 93E11
Mots-clés : Filtering
@article{10_14708_ma_v13i26_1650,
     author = {Aleksandre Kowalski and Dominik Szynal},
     title = {The {Kalman} filter in the case where exists correlation between noises of the plant and meter},
     journal = {Mathematica Applicanda},
     pages = { 93--117},
     publisher = {mathdoc},
     volume = {13},
     number = {26},
     year = {1985},
     doi = {10.14708/ma.v13i26.1650},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v13i26.1650/}
}
TY  - JOUR
AU  - Aleksandre Kowalski
AU  - Dominik Szynal
TI  - The Kalman filter in the case where exists correlation between noises of the plant and meter
JO  - Mathematica Applicanda
PY  - 1985
SP  -  93
EP  - 117
VL  - 13
IS  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v13i26.1650/
DO  - 10.14708/ma.v13i26.1650
LA  - pl
ID  - 10_14708_ma_v13i26_1650
ER  - 
%0 Journal Article
%A Aleksandre Kowalski
%A Dominik Szynal
%T The Kalman filter in the case where exists correlation between noises of the plant and meter
%J Mathematica Applicanda
%D 1985
%P  93-117
%V 13
%N 26
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v13i26.1650/
%R 10.14708/ma.v13i26.1650
%G pl
%F 10_14708_ma_v13i26_1650
Aleksandre Kowalski; Dominik Szynal. The Kalman filter in the case where exists correlation between noises of the plant and meter. Mathematica Applicanda, Tome 13 (1985) no. 26, pp.  93-117. doi : 10.14708/ma.v13i26.1650. http://geodesic.mathdoc.fr/articles/10.14708/ma.v13i26.1650/

Cité par Sources :