Determining the step of integration for the one-step Bobkov's methods
Mathematica Applicanda, Tome 13 (1985) no. 25, pp. 129-172.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Consider the class of Bobkov methods for solving the IVP: y′=f(x,y), x[a,b]. Four procedures for finding the step size h are presented. It is shown that these Bobkov methods with automatic stepsize control are faster (i.e. need fewer evaluations of f) than the corresponding Runge-Kutta methods.
DOI : 10.14708/ma.v13i25.1636
Classification : 65L05 (65V05)
Mots-clés : Initial value problems, Automated algorithms
@article{10_14708_ma_v13i25_1636,
     author = {Mieczys{\l}aw Szyszkowicz},
     title = {Determining the step of integration for the one-step {Bobkov's} methods},
     journal = {Mathematica Applicanda},
     pages = { 129--172},
     publisher = {mathdoc},
     volume = {13},
     number = {25},
     year = {1985},
     doi = {10.14708/ma.v13i25.1636},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v13i25.1636/}
}
TY  - JOUR
AU  - Mieczysław Szyszkowicz
TI  - Determining the step of integration for the one-step Bobkov's methods
JO  - Mathematica Applicanda
PY  - 1985
SP  -  129
EP  - 172
VL  - 13
IS  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v13i25.1636/
DO  - 10.14708/ma.v13i25.1636
LA  - pl
ID  - 10_14708_ma_v13i25_1636
ER  - 
%0 Journal Article
%A Mieczysław Szyszkowicz
%T Determining the step of integration for the one-step Bobkov's methods
%J Mathematica Applicanda
%D 1985
%P  129-172
%V 13
%N 25
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v13i25.1636/
%R 10.14708/ma.v13i25.1636
%G pl
%F 10_14708_ma_v13i25_1636
Mieczysław Szyszkowicz. Determining the step of integration for the one-step Bobkov's methods. Mathematica Applicanda, Tome 13 (1985) no. 25, pp.  129-172. doi : 10.14708/ma.v13i25.1636. http://geodesic.mathdoc.fr/articles/10.14708/ma.v13i25.1636/

Cité par Sources :