Galerkin's method of variable directions for parabolic obstacle variational inequalities
Mathematica Applicanda, Tome 11 (1983) no. 23, pp. 5-22.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Author introduction (translated from the Polish): "This paper is an attempt to extend Galerkin's variable directions method ADG, used in the solution of differential equations [see M. Dryja , same journal 15 (1979), 5–23; MR0549983; G. Fairweather , Finite element Galerkin methods for differential equations, Chapter 6, Dekker, New York, 1978; MR0495013] to inequalities. The numerical properties of the scheme of the ADG method are discussed using the example of the following variational problem: Find a function u:(0,T)→K⊂V⊂H such that: (u′+Au−f,v−u)H≥0 for all v∈K and almost all t in [0,T), u(0)=u0, where V and H are Hilbert spaces of functions defined on Ω. The problem studied in this paper is called a parabolic obstacle variational inequality. We restrict ourselves to problems with a symmetric operator A whose coefficients do not depend on the time variable."
DOI : 10.14708/ma.v11i23.1598
Classification : 49D15 (49A29 65L60)
Mots-clés : Methods of Newton-Raphson, Galerkin and Ritz types, Variational inequalities, Finite elements, Rayleigh-Ritz, Galerkin and collocation methods
@article{10_14708_ma_v11i23_1598,
     author = {Adam Zem{\l}a},
     title = {Galerkin's method of variable directions for parabolic obstacle variational inequalities},
     journal = {Mathematica Applicanda},
     pages = { 5--22},
     publisher = {mathdoc},
     volume = {11},
     number = {23},
     year = {1983},
     doi = {10.14708/ma.v11i23.1598},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v11i23.1598/}
}
TY  - JOUR
AU  - Adam Zemła
TI  - Galerkin's method of variable directions for parabolic obstacle variational inequalities
JO  - Mathematica Applicanda
PY  - 1983
SP  -  5
EP  - 22
VL  - 11
IS  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v11i23.1598/
DO  - 10.14708/ma.v11i23.1598
LA  - pl
ID  - 10_14708_ma_v11i23_1598
ER  - 
%0 Journal Article
%A Adam Zemła
%T Galerkin's method of variable directions for parabolic obstacle variational inequalities
%J Mathematica Applicanda
%D 1983
%P  5-22
%V 11
%N 23
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v11i23.1598/
%R 10.14708/ma.v11i23.1598
%G pl
%F 10_14708_ma_v11i23_1598
Adam Zemła. Galerkin's method of variable directions for parabolic obstacle variational inequalities. Mathematica Applicanda, Tome 11 (1983) no. 23, pp.  5-22. doi : 10.14708/ma.v11i23.1598. http://geodesic.mathdoc.fr/articles/10.14708/ma.v11i23.1598/

Cité par Sources :