Superconvergence in the finite element method
Mathematica Applicanda, Tome 10 (1982) no. 20, pp. 93-107.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

For some variants of the finite element method there exist points having a remainder value or a derivation remainder remarkably less than those given by global norms. This phenomenon is called superconvergence and the points are called superconvergence points. The generalized problem corresponding to (1) is as follows: Let Hk(Ω) be Sobolev space and Hk0(Ω) the completion of the space C∞0(Ω) with norm ∥⋅∥k,Ω. Find u∈H10(Ω) such that for each v∈H10(Ω), (2) a(u,v)=(f,v)0 holds, where a(u,v)=∫Ω(∑n|α|=0aα(x)DαuDαv)dx, (f,v)0=∫Ωf(x)v(x)dx, Dα=Dα11⋯Dαnn,1.5pt Dαiiu=∂αiu/∂xαii, i=1,n ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄. The approximate problem of the finite element variant considered is the following: Find uh∈Vh such that (3) for all v∈Vh, a(uh,v)=(f,v)0. The main result is the theorem: Let ai∈C(Ω ̄), D1ai,D2ai∈L∞(Ω),i=1,2,∥σ∥∞L(Ω)≤σ,f∈L2(Ω). Suppose the eigenvalues of the operator L are different from zero, and u∈H4(Ω)∩H10(Ω). Then there exists h0 such that for h≤h0, h2∑P∈G|grad(u−uh)(P)|≤Ch3(|u|3+|u|4), where u and uh are the solutions of problems (2) and (3), respectively, and C is some constant independent of h. Further, |u|k={∫Ω(∑|α|=k(Dαu)2)dx}1/2, G=⋃N1N2i=1Fi(R), R={(±3√/3,±3√/3)} is a Gauss point set in the quadrant S={(ξ1,ξ2):|ξk|≤1,k=1,2}, and Fi(F(1)i,F(2)i):S→ei, ei an element; F(1)i(ξ1,ξ2)=x(i)0+h1ξ1/2, F(2)i(ξ1,ξ2)=y(i)0+h2ξ2/2, and (x(i)0,y(i)0) is the middle element.
DOI : 10.14708/ma.v10i20.1458
Classification : 65N30
Mots-clés : Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods
@article{10_14708_ma_v10i20_1458,
     author = {Zbigniew Leyk},
     title = {Superconvergence in the finite element method},
     journal = {Mathematica Applicanda},
     pages = { 93--107},
     publisher = {mathdoc},
     volume = {10},
     number = {20},
     year = {1982},
     doi = {10.14708/ma.v10i20.1458},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i20.1458/}
}
TY  - JOUR
AU  - Zbigniew Leyk
TI  - Superconvergence in the finite element method
JO  - Mathematica Applicanda
PY  - 1982
SP  -  93
EP  - 107
VL  - 10
IS  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i20.1458/
DO  - 10.14708/ma.v10i20.1458
LA  - pl
ID  - 10_14708_ma_v10i20_1458
ER  - 
%0 Journal Article
%A Zbigniew Leyk
%T Superconvergence in the finite element method
%J Mathematica Applicanda
%D 1982
%P  93-107
%V 10
%N 20
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i20.1458/
%R 10.14708/ma.v10i20.1458
%G pl
%F 10_14708_ma_v10i20_1458
Zbigniew Leyk. Superconvergence in the finite element method. Mathematica Applicanda, Tome 10 (1982) no. 20, pp.  93-107. doi : 10.14708/ma.v10i20.1458. http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i20.1458/

Cité par Sources :