Solution of the Fredholm integral equation of the second kind using spline functions
Mathematica Applicanda, Tome 10 (1982) no. 19, pp. 15-21.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

The author presents a polynomial spline function method for solution of the linear Fredholm integral equation f(s)+K1f(s)=φ(s), where K1f(s)=∫CK(s,t)f(t)dt, τ∈[0,2π], and C is a Jordan curve. The method is as follows: The approximate equation for the function fδ(s) is (1) fδ+K1δfδ=φ, where K1δ=K1Tδ, and (2) Tδf(t)=∑n−1i=0f(ti)Wi4(t)Ni1(t). Here Wi4(t) is a spline function, i.e., a 3rd degree polynomial, and Ni1(t)=1 for t∈[ti,ti+1) and Ni1(t)=0 for t∉[ti,ti+1). The substitution of (2) into (1) leads to the equation fδ(s)+∑n−1i=0fδ(ti)K1ei4(s)=φ(s), where ei4(t)=Wi4(t)Ni1(t), i=0,⋯,n−1. The coefficients satisfy the equations fδ(tl)+∑i=0n−1fδ(ti)K1ei4(tl)=φ(tl),l=0,⋯,n−1. The author gives an estimate for ∥fδ−f∥C, and ends the article with an example.
DOI : 10.14708/ma.v10i19.1530
Classification : 45L05 (45B05 65R20)
Mots-clés : Theoretical approximation of solutions,Fredholm integral equations,Integral equations
@article{10_14708_ma_v10i19_1530,
     author = {Zdzis{\l}aw Jab{\l}o\'nski},
     title = {Solution of the {Fredholm} integral equation of the second kind using spline functions},
     journal = {Mathematica Applicanda},
     pages = { 15--21},
     publisher = {mathdoc},
     volume = {10},
     number = {19},
     year = {1982},
     doi = {10.14708/ma.v10i19.1530},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i19.1530/}
}
TY  - JOUR
AU  - Zdzisław Jabłoński
TI  - Solution of the Fredholm integral equation of the second kind using spline functions
JO  - Mathematica Applicanda
PY  - 1982
SP  -  15
EP  - 21
VL  - 10
IS  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i19.1530/
DO  - 10.14708/ma.v10i19.1530
LA  - pl
ID  - 10_14708_ma_v10i19_1530
ER  - 
%0 Journal Article
%A Zdzisław Jabłoński
%T Solution of the Fredholm integral equation of the second kind using spline functions
%J Mathematica Applicanda
%D 1982
%P  15-21
%V 10
%N 19
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i19.1530/
%R 10.14708/ma.v10i19.1530
%G pl
%F 10_14708_ma_v10i19_1530
Zdzisław Jabłoński. Solution of the Fredholm integral equation of the second kind using spline functions. Mathematica Applicanda, Tome 10 (1982) no. 19, pp.  15-21. doi : 10.14708/ma.v10i19.1530. http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i19.1530/

Cité par Sources :