Determination of the potential form of operators
Mathematica Applicanda, Tome 10 (1982) no. 18, pp. 107-122.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

The author extends ideas of duality [see, for example, B. Noble and M. J. Sewell, J. Inst. Math. Appl. 9 (1972), 123–193; MR0307012] to a class of nonlinear operators on Banach spaces. Let U, V be Banach spaces and a(u,v) a bilinear form on U×V. Let N be a (nonlinear) operator N:U→V. GN(u)h denotes the Gâteaux derivative of N in the direction of h, computed at the point u∈U. Let us assume that a separates points in U×V (as defined by Marshall Stone). If there is v∈V such that a(h,v)=〈h,Gf(u)〉 for a functional f:U→R then v is called the gradient of f(u). The operator N is called potential if a suitable functional f satisfying this condition exists. The problem of symmetrizing N involves a suitable choice of the bilinear form a. For example, the operator N(u(t))=[(du/dt)2−g(t)] is not potential with respect to the usual L2 product. The author formulates a number of variational principles and discusses specific examples. This is an interesting article, supplementing the ideas of E. Tonti and of R. W. Atherton and G. M. Homsy [Studies in Appl. Math. 54 (1975), no. 1, 31–60; MR0458271].
DOI : 10.14708/ma.v10i18.1526
Classification : 49H05(47H99 58E30)
Mots-clés : Variational principles of physics,Variational principles
@article{10_14708_ma_v10i18_1526,
     author = {J. J. Telega},
     title = {Determination of the potential form of operators},
     journal = {Mathematica Applicanda},
     pages = { 107--122},
     publisher = {mathdoc},
     volume = {10},
     number = {18},
     year = {1982},
     doi = {10.14708/ma.v10i18.1526},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i18.1526/}
}
TY  - JOUR
AU  - J. J. Telega
TI  - Determination of the potential form of operators
JO  - Mathematica Applicanda
PY  - 1982
SP  -  107
EP  - 122
VL  - 10
IS  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i18.1526/
DO  - 10.14708/ma.v10i18.1526
LA  - pl
ID  - 10_14708_ma_v10i18_1526
ER  - 
%0 Journal Article
%A J. J. Telega
%T Determination of the potential form of operators
%J Mathematica Applicanda
%D 1982
%P  107-122
%V 10
%N 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i18.1526/
%R 10.14708/ma.v10i18.1526
%G pl
%F 10_14708_ma_v10i18_1526
J. J. Telega. Determination of the potential form of operators. Mathematica Applicanda, Tome 10 (1982) no. 18, pp.  107-122. doi : 10.14708/ma.v10i18.1526. http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i18.1526/

Cité par Sources :