Confidence interval with specified precision for the mean value in a sequence of Gaussian variables
Mathematica Applicanda, Tome 10 (1982) no. 18, pp. 101-106.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Consider the class C of real-valued stochastic processes of the form Xt=m+mt+ξt, with discrete t=1,2,⋯, such that mt→0 and the ξt are random variables with normal distributions N(0,σt), where σt→0. Required is a sequence of estimators m^t for the parameter m, determined by X1,⋯,Xt and a stopping rule τ, such that for every ε>0 and 0
DOI : 10.14708/ma.v10i18.1525
Classification : 62L15(62F25 62M09)
Mots-clés : Optimal stopping,Tolerance and confidence regions,Non-Markovian processes: estimation
@article{10_14708_ma_v10i18_1525,
     author = {Beniamin Go{\l}dys},
     title = {Confidence interval with specified precision for the mean value in a sequence of {Gaussian} variables},
     journal = {Mathematica Applicanda},
     pages = { 101--106},
     publisher = {mathdoc},
     volume = {10},
     number = {18},
     year = {1982},
     doi = {10.14708/ma.v10i18.1525},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i18.1525/}
}
TY  - JOUR
AU  - Beniamin Gołdys
TI  - Confidence interval with specified precision for the mean value in a sequence of Gaussian variables
JO  - Mathematica Applicanda
PY  - 1982
SP  -  101
EP  - 106
VL  - 10
IS  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i18.1525/
DO  - 10.14708/ma.v10i18.1525
LA  - pl
ID  - 10_14708_ma_v10i18_1525
ER  - 
%0 Journal Article
%A Beniamin Gołdys
%T Confidence interval with specified precision for the mean value in a sequence of Gaussian variables
%J Mathematica Applicanda
%D 1982
%P  101-106
%V 10
%N 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i18.1525/
%R 10.14708/ma.v10i18.1525
%G pl
%F 10_14708_ma_v10i18_1525
Beniamin Gołdys. Confidence interval with specified precision for the mean value in a sequence of Gaussian variables. Mathematica Applicanda, Tome 10 (1982) no. 18, pp.  101-106. doi : 10.14708/ma.v10i18.1525. http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i18.1525/

Cité par Sources :