Elements of the theory of dams
Mathematica Applicanda, Tome 10 (1982) no. 18, pp. 5-57.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

This paper is a review of recent results in theory of dams. Only continuous-time models are considered, the dam capacity being assumed to be infinite. The results are given for the following cases: (1) The input is a process with independent increments, and release is at a constant rate; (2) the input and output processes have infinitely divisible distributions; (3) the input is a process with independent increments, and the release rate is equal to r(x), where x denotes the content of the dam; (4) the input is a semi-Markov process, and the output rate is r(x); (5) the input and output are semi-Markov processes. The bibliography includes 88 items.
DOI : 10.14708/ma.v10i18.1522
Classification : 60K30(90B05)
Mots-clés : Applications (congestion, allocation, storage, traffic, etc.),Inventory, storage, reservoirs
@article{10_14708_ma_v10i18_1522,
     author = {Maria Jankiewicz},
     title = {Elements of the theory of dams},
     journal = {Mathematica Applicanda},
     pages = { 5--57},
     publisher = {mathdoc},
     volume = {10},
     number = {18},
     year = {1982},
     doi = {10.14708/ma.v10i18.1522},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i18.1522/}
}
TY  - JOUR
AU  - Maria Jankiewicz
TI  - Elements of the theory of dams
JO  - Mathematica Applicanda
PY  - 1982
SP  -  5
EP  - 57
VL  - 10
IS  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i18.1522/
DO  - 10.14708/ma.v10i18.1522
LA  - pl
ID  - 10_14708_ma_v10i18_1522
ER  - 
%0 Journal Article
%A Maria Jankiewicz
%T Elements of the theory of dams
%J Mathematica Applicanda
%D 1982
%P  5-57
%V 10
%N 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i18.1522/
%R 10.14708/ma.v10i18.1522
%G pl
%F 10_14708_ma_v10i18_1522
Maria Jankiewicz. Elements of the theory of dams. Mathematica Applicanda, Tome 10 (1982) no. 18, pp.  5-57. doi : 10.14708/ma.v10i18.1522. http://geodesic.mathdoc.fr/articles/10.14708/ma.v10i18.1522/

Cité par Sources :