Classification of the norming sets of $L_s(^3 l_1^2)$
Commentationes Mathematicae, Tome 61 (2023) no. 1-2, pp. 33-43.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Let $n\in \mathbb{N}, n\geq 2.$ An element $(x_1, \ldots, x_n)\in E^n$ is called a {\em norming point} of $T\in {\mathcal L}(^n E)$ if $\|x_1\|=\cdots=\|x_n\|=1$ and $|T(x_1, \ldots, x_n)|=\|T\|,$ where ${\mathcal L}(^n E)$ denotes the space of all continuous symmetric $n$-linear forms on $E.$ For $T\in {\mathcal L}(^n E),$ we define $$\qopname\relax o{Norm}(T)=\Big\{(x_1, \ldots, x_n)\in E^n: (x_1, \ldots, x_n)~\mbox{is a norming point of}~T\Big\}.$$ $\qopname\relax o{Norm}(T)$ is called the {\em norming set} of $T$. In this paper, we classify $\qopname\relax o{Norm}(T)$ for every $T\in {\mathcal L}_s(^3 l_{1}^2),$ where ${\mathcal L}_s(^3 l_1^2)$ denotes the space of all continuous symmetric 3-linear forms on the plane with the $l_1$-norm.
@article{10_14708_cm_v61i1_2_7176,
     author = {Sung Guen Kim},
     title = {Classification of the norming sets of $L_s(^3 l_1^2)$},
     journal = {Commentationes Mathematicae},
     pages = { 33--43},
     publisher = {mathdoc},
     volume = {61},
     number = {1-2},
     year = {2023},
     doi = {10.14708/cm.v61i1-2.7176},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v61i1-2.7176/}
}
TY  - JOUR
AU  - Sung Guen Kim
TI  - Classification of the norming sets of $L_s(^3 l_1^2)$
JO  - Commentationes Mathematicae
PY  - 2023
SP  -  33
EP  - 43
VL  - 61
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v61i1-2.7176/
DO  - 10.14708/cm.v61i1-2.7176
LA  - pl
ID  - 10_14708_cm_v61i1_2_7176
ER  - 
%0 Journal Article
%A Sung Guen Kim
%T Classification of the norming sets of $L_s(^3 l_1^2)$
%J Commentationes Mathematicae
%D 2023
%P  33-43
%V 61
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v61i1-2.7176/
%R 10.14708/cm.v61i1-2.7176
%G pl
%F 10_14708_cm_v61i1_2_7176
Sung Guen Kim. Classification of the norming sets of $L_s(^3 l_1^2)$. Commentationes Mathematicae, Tome 61 (2023) no. 1-2, pp.  33-43. doi : 10.14708/cm.v61i1-2.7176. http://geodesic.mathdoc.fr/articles/10.14708/cm.v61i1-2.7176/

Cité par Sources :