Norm attaining bilinear forms on the plane with the octagonal norm
Commentationes Mathematicae, Tome 61 (2023) no. 1-2, pp. 15-24.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

For given unit vectors $x_1, \cdots, x_n$ of a real Banach space $E,$ we define $$NA({\mathcal L}(^nE))(x_1, \cdots, x_n)=\{T\in {\mathcal L}(^nE): |T(x_1, \cdots, x_n)|=\|T\|=1\},$$ where ${\mathcal L}(^nE)$ denotes the Banach space of all continuous $n$-linear forms on $E$ endowed with the norm $\|T\|=\sup_{\|x_k\|=1, 1\leq k\leq n}{|T(x_1, \ldots, x_n)|}.$ In this paper, we classify $NA({\mathcal L}(^2 \mathbb{R}^2_{o(w)}))((x_1, x_2), (y_1, y_2))$ for unit vectors $(x_1, x_2), (y_1, y_2)\in \mathbb{R}^2_{o(w)},$ where $\mathbb{R}^2_{o(w)}=\mathbb{R}^2$ with the octagonal norm with weight $0
@article{10_14708_cm_v61i1_2_7128,
     author = {Sung Guen Kim},
     title = {Norm attaining bilinear forms on the plane with the octagonal norm},
     journal = {Commentationes Mathematicae},
     pages = { 15--24},
     publisher = {mathdoc},
     volume = {61},
     number = {1-2},
     year = {2023},
     doi = {10.14708/cm.v61i1-2.7128},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v61i1-2.7128/}
}
TY  - JOUR
AU  - Sung Guen Kim
TI  - Norm attaining bilinear forms on the plane with the octagonal norm
JO  - Commentationes Mathematicae
PY  - 2023
SP  -  15
EP  - 24
VL  - 61
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v61i1-2.7128/
DO  - 10.14708/cm.v61i1-2.7128
LA  - pl
ID  - 10_14708_cm_v61i1_2_7128
ER  - 
%0 Journal Article
%A Sung Guen Kim
%T Norm attaining bilinear forms on the plane with the octagonal norm
%J Commentationes Mathematicae
%D 2023
%P  15-24
%V 61
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v61i1-2.7128/
%R 10.14708/cm.v61i1-2.7128
%G pl
%F 10_14708_cm_v61i1_2_7128
Sung Guen Kim. Norm attaining bilinear forms on the plane with the octagonal norm. Commentationes Mathematicae, Tome 61 (2023) no. 1-2, pp.  15-24. doi : 10.14708/cm.v61i1-2.7128. http://geodesic.mathdoc.fr/articles/10.14708/cm.v61i1-2.7128/

Cité par Sources :