The norming set of a bilinear form on $l_{\infty}^2$
Commentationes Mathematicae, Tome 60 (2020) no. 1-2, pp. 37-63.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

An element \((x_1, \ldots, x_n)\in E^n\) is called a~\emph{norming point} of \(T\in {\mathcal L}(^n E)\) if \(\|x_1\|=\cdots=\|x_n\|=1\) and \(|T(x_1, \ldots, x_n)|=\|T\|\), where \({\mathcal L}(^n E)\) denotes the space of all continuous \(n\)-linear forms on \(E\). For \(T\in {\mathcal L}(^n E)\), we define \(\qopname\relax o{Norm}(T)=\{(x_1, \ldots, x_n)\in E^n: (x_1, \ldots, x_n)\text{~is a~norming point of~}T\}\). \(\qopname\relax o{Norm}(T)\) is called the \emph{norming set} of \(T\). We classify \(\qopname\relax o{Norm}(T)\) for every \(T\in {\mathcal L}(^2l_{\infty}^2)\).
DOI : 10.14708/cm.v60i1-2.7071
Classification : 46A22
Mots-clés : Norming points, bilinear forms
@article{10_14708_cm_v60i1_2_7071,
     author = {Sung Guen Kim},
     title = {The norming set of a bilinear form on $l_{\infty}^2$},
     journal = {Commentationes Mathematicae},
     pages = { 37--63},
     publisher = {mathdoc},
     volume = {60},
     number = {1-2},
     year = {2020},
     doi = {10.14708/cm.v60i1-2.7071},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v60i1-2.7071/}
}
TY  - JOUR
AU  - Sung Guen Kim
TI  - The norming set of a bilinear form on $l_{\infty}^2$
JO  - Commentationes Mathematicae
PY  - 2020
SP  -  37
EP  - 63
VL  - 60
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v60i1-2.7071/
DO  - 10.14708/cm.v60i1-2.7071
LA  - pl
ID  - 10_14708_cm_v60i1_2_7071
ER  - 
%0 Journal Article
%A Sung Guen Kim
%T The norming set of a bilinear form on $l_{\infty}^2$
%J Commentationes Mathematicae
%D 2020
%P  37-63
%V 60
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v60i1-2.7071/
%R 10.14708/cm.v60i1-2.7071
%G pl
%F 10_14708_cm_v60i1_2_7071
Sung Guen Kim. The norming set of a bilinear form on $l_{\infty}^2$. Commentationes Mathematicae, Tome 60 (2020) no. 1-2, pp.  37-63. doi : 10.14708/cm.v60i1-2.7071. http://geodesic.mathdoc.fr/articles/10.14708/cm.v60i1-2.7071/

Cité par Sources :