Non-square points of Orlicz-Lorentz function spaces
Commentationes Mathematicae, Tome 59 (2019) no. 1-2, p. 1−17.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this paper, criteria for non-square points in Orlicz−Lorentz function spaces \(\Lambda_{\varphi, \omega}\) endowed with the Luxemburg norm are given. The widest possible classes of convex Orlicz functions and weight functions are admitted. In consequence, criteria for non-square points in Orlicz spaces \(L^{\varphi}\), which generalize the already known results, are presented.
DOI : 10.14708/cm.v59i1-2.6472
Classification : 46B20, 46B42, 46A80, 46E30
Mots-clés : Non-square points, non-squareness, Orlicz−Lorentz space, Lorentz space, Orlicz function, Luxemburg norm, strict monotonicity
@article{10_14708_cm_v59i1_2_6472,
     author = {Joanna Ko\'nczak},
     title = {Non-square points of {Orlicz-Lorentz} function spaces},
     journal = {Commentationes Mathematicae},
     pages = { 1\ensuremath{-}17},
     publisher = {mathdoc},
     volume = {59},
     number = {1-2},
     year = {2019},
     doi = {10.14708/cm.v59i1-2.6472},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v59i1-2.6472/}
}
TY  - JOUR
AU  - Joanna Kończak
TI  - Non-square points of Orlicz-Lorentz function spaces
JO  - Commentationes Mathematicae
PY  - 2019
SP  -  1−17
VL  - 59
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v59i1-2.6472/
DO  - 10.14708/cm.v59i1-2.6472
LA  - pl
ID  - 10_14708_cm_v59i1_2_6472
ER  - 
%0 Journal Article
%A Joanna Kończak
%T Non-square points of Orlicz-Lorentz function spaces
%J Commentationes Mathematicae
%D 2019
%P  1−17
%V 59
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v59i1-2.6472/
%R 10.14708/cm.v59i1-2.6472
%G pl
%F 10_14708_cm_v59i1_2_6472
Joanna Kończak. Non-square points of Orlicz-Lorentz function spaces. Commentationes Mathematicae, Tome 59 (2019) no. 1-2, p.  1−17. doi : 10.14708/cm.v59i1-2.6472. http://geodesic.mathdoc.fr/articles/10.14708/cm.v59i1-2.6472/

Cité par Sources :