Second order evolution differential functional equations with infinite delay
Commentationes Mathematicae, Tome 58 (2018) no. 1-2, p. 93–104.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

We consider a second order semilinear functional evolution equation with infinite delay in a Banach space. We prove the existence of mild solutions for this equation using the measure of noncompactness technique and the Schauder fixed point theorem.
DOI : 10.14708/cm.v58i1-2.6377
Classification : 35L70, 35R10, 35R45
Mots-clés : Measure of noncompactness, second order evolution equation, infinite delay
@article{10_14708_cm_v58i1_2_6377,
     author = {Tomasz Cz{\l}api\'nski and Adrian Karpowicz},
     title = {Second order evolution differential functional equations with infinite delay},
     journal = {Commentationes Mathematicae},
     pages = { 93{\textendash}104},
     publisher = {mathdoc},
     volume = {58},
     number = {1-2},
     year = {2018},
     doi = {10.14708/cm.v58i1-2.6377},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v58i1-2.6377/}
}
TY  - JOUR
AU  - Tomasz Człapiński
AU  - Adrian Karpowicz
TI  - Second order evolution differential functional equations with infinite delay
JO  - Commentationes Mathematicae
PY  - 2018
SP  -  93–104
VL  - 58
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v58i1-2.6377/
DO  - 10.14708/cm.v58i1-2.6377
LA  - pl
ID  - 10_14708_cm_v58i1_2_6377
ER  - 
%0 Journal Article
%A Tomasz Człapiński
%A Adrian Karpowicz
%T Second order evolution differential functional equations with infinite delay
%J Commentationes Mathematicae
%D 2018
%P  93–104
%V 58
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v58i1-2.6377/
%R 10.14708/cm.v58i1-2.6377
%G pl
%F 10_14708_cm_v58i1_2_6377
Tomasz Człapiński; Adrian Karpowicz. Second order evolution differential functional equations with infinite delay. Commentationes Mathematicae, Tome 58 (2018) no. 1-2, p.  93–104. doi : 10.14708/cm.v58i1-2.6377. http://geodesic.mathdoc.fr/articles/10.14708/cm.v58i1-2.6377/

Cité par Sources :