Density of analytic polynomials in abstract Hardy spaces
Commentationes Mathematicae, Tome 57 (2017) no. 2, pp. 131-141.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Let \(X\) be a separable Banach function space on the unit circle \(\T\) and let \(H[X]\) be the abstract Hardy space built upon \(X\). We show that the set of analytic polynomials is dense in \(H[X]\) if the Hardy\polishendash Littlewood maximal operator is bounded on the associate space \(X'\). This result is specified to the case of variable Lebesgue spaces.
DOI : 10.14708/cm.v57i2.4364
Classification : 46E30, 42A10
Mots-clés : Banach function space, rearrangement-invariant space, variable Lebesgue space, abstract Hardy space, analytic polynomial, Fejér kernel
@article{10_14708_cm_v57i2_4364,
     author = {Alexei Yu. Karlovich},
     title = {Density of analytic polynomials in abstract {Hardy} spaces},
     journal = {Commentationes Mathematicae},
     pages = { 131--141},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2017},
     doi = {10.14708/cm.v57i2.4364},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v57i2.4364/}
}
TY  - JOUR
AU  - Alexei Yu. Karlovich
TI  - Density of analytic polynomials in abstract Hardy spaces
JO  - Commentationes Mathematicae
PY  - 2017
SP  -  131
EP  - 141
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v57i2.4364/
DO  - 10.14708/cm.v57i2.4364
LA  - pl
ID  - 10_14708_cm_v57i2_4364
ER  - 
%0 Journal Article
%A Alexei Yu. Karlovich
%T Density of analytic polynomials in abstract Hardy spaces
%J Commentationes Mathematicae
%D 2017
%P  131-141
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v57i2.4364/
%R 10.14708/cm.v57i2.4364
%G pl
%F 10_14708_cm_v57i2_4364
Alexei Yu. Karlovich. Density of analytic polynomials in abstract Hardy spaces. Commentationes Mathematicae, Tome 57 (2017) no. 2, pp.  131-141. doi : 10.14708/cm.v57i2.4364. http://geodesic.mathdoc.fr/articles/10.14708/cm.v57i2.4364/

Cité par Sources :