Uniform \(\lambda\)-property in \(L^1\cap L^\infty\)
Commentationes Mathematicae, Tome 55 (2015) no. 2, p. 171−181.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Here it is proved that the space \(L^{1}\cap L^{\infty }\) equipped with the standard interpolation norm \(\left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}=\max \left\{ \left\Vert \cdot \right\Vert _{L^{1}},\left\Vert \cdot \right\Vert _{L^{\infty }}\right\} \) has the uniform \(\lambda \)-property if and only if \(\mu (T)\leq 1.\) Replacing the standard norm with an equivalent one \(\left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}^{\prime }= \) \(\left\Vert \cdot \right\Vert _{L^{1}}+\left\Vert \cdot \right\Vert _{L^{\infty }}\), a different result is obtained.: \((L^{1}\cap L^{\infty }, \left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}^{\prime } )\) has the uniform \(\lambda \)-property if and only if \(\mu (T)
DOI : 10.14708/cm.v55i2.1122
Classification : 46E30;46B20, 46B22
Mots-clés : \(\lambda\)-property, uniform \(\lambda\)-property, interpolation spaces, convex series representation property
@article{10_14708_cm_v55i2_1122,
     author = {Adam Bohonos and Ryszard P{\l}uciennik},
     title = {Uniform \(\lambda\)-property in {\(L^1\cap} {L^\infty\)}},
     journal = {Commentationes Mathematicae},
     pages = { 171\ensuremath{-}181},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2015},
     doi = {10.14708/cm.v55i2.1122},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v55i2.1122/}
}
TY  - JOUR
AU  - Adam Bohonos
AU  - Ryszard Płuciennik
TI  - Uniform \(\lambda\)-property in \(L^1\cap L^\infty\)
JO  - Commentationes Mathematicae
PY  - 2015
SP  -  171−181
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v55i2.1122/
DO  - 10.14708/cm.v55i2.1122
LA  - pl
ID  - 10_14708_cm_v55i2_1122
ER  - 
%0 Journal Article
%A Adam Bohonos
%A Ryszard Płuciennik
%T Uniform \(\lambda\)-property in \(L^1\cap L^\infty\)
%J Commentationes Mathematicae
%D 2015
%P  171−181
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v55i2.1122/
%R 10.14708/cm.v55i2.1122
%G pl
%F 10_14708_cm_v55i2_1122
Adam Bohonos; Ryszard Płuciennik. Uniform \(\lambda\)-property in \(L^1\cap L^\infty\). Commentationes Mathematicae, Tome 55 (2015) no. 2, p.  171−181. doi : 10.14708/cm.v55i2.1122. http://geodesic.mathdoc.fr/articles/10.14708/cm.v55i2.1122/

Cité par Sources :