On the asymptotic behaviors of solutions to nonlinear differential equations of second order
Commentationes Mathematicae, Tome 55 (2015) no. 1, pp. 1-8
Cet article a éte moissonné depuis la source Annales Societatis Mathematicae Polonae Series
We study the asymptotic behavior of solutions to a nonlinear differential equation of the second order whose coefficient of nonlinearity is a bounded function for arbitrarily large values of \(x\) in \(R\). We obtain certain sufficient conditions which guarantee boundedness of solutions, their convergence to zero as \(x\rightarrow \infty\) and their unboundedness.
Classification :
34C10, 34D05
Mots-clés : Asymptotic behavior, nonlinear differential equation, second order
Mots-clés : Asymptotic behavior, nonlinear differential equation, second order
@article{10_14708_cm_v55i1_812,
author = {Cemil Tunc and Timur Ayhan},
title = {On the asymptotic behaviors of solutions to nonlinear differential equations of second order},
journal = {Commentationes Mathematicae},
pages = { 1--8},
year = {2015},
volume = {55},
number = {1},
doi = {10.14708/cm.v55i1.812},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v55i1.812/}
}
TY - JOUR AU - Cemil Tunc AU - Timur Ayhan TI - On the asymptotic behaviors of solutions to nonlinear differential equations of second order JO - Commentationes Mathematicae PY - 2015 SP - 1 EP - 8 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14708/cm.v55i1.812/ DO - 10.14708/cm.v55i1.812 LA - pl ID - 10_14708_cm_v55i1_812 ER -
%0 Journal Article %A Cemil Tunc %A Timur Ayhan %T On the asymptotic behaviors of solutions to nonlinear differential equations of second order %J Commentationes Mathematicae %D 2015 %P 1-8 %V 55 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14708/cm.v55i1.812/ %R 10.14708/cm.v55i1.812 %G pl %F 10_14708_cm_v55i1_812
Cemil Tunc; Timur Ayhan. On the asymptotic behaviors of solutions to nonlinear differential equations of second order. Commentationes Mathematicae, Tome 55 (2015) no. 1, pp. 1-8. doi: 10.14708/cm.v55i1.812
Cité par Sources :