Generalized weighted Besov spaces on the Gegenbauer hypergroup
Commentationes Mathematicae, Tome 54 (2014) no. 1, pp. 95-128.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this paper we study generalized weighted Besov type spaces on the Gegenbauer hypergroup. We give different characterizations of these spaces in terms of generalized convolution with a kind of smooth functions and by means of generalized translation operators. Also a discrete norm is given to obtain more general properties on these spaces. Obtained results are analogies of the results for generalized Bessel shifts obtained in the work [5].
DOI : 10.14708/cm.v54i1.765
Classification : 46B20, 42B25, 42B35
Mots-clés : Gegenbauer transformations, Gegenbauer hypergroup, generalized Gegenbauer shifts operators, Besov spaces, generalized convolution
@article{10_14708_cm_v54i1_765,
     author = {Elman J. Ibrahimov},
     title = {Generalized weighted {Besov} spaces on the {Gegenbauer} hypergroup},
     journal = {Commentationes Mathematicae},
     pages = { 95--128},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2014},
     doi = {10.14708/cm.v54i1.765},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v54i1.765/}
}
TY  - JOUR
AU  - Elman J. Ibrahimov
TI  - Generalized weighted Besov spaces on the Gegenbauer hypergroup
JO  - Commentationes Mathematicae
PY  - 2014
SP  -  95
EP  - 128
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v54i1.765/
DO  - 10.14708/cm.v54i1.765
LA  - pl
ID  - 10_14708_cm_v54i1_765
ER  - 
%0 Journal Article
%A Elman J. Ibrahimov
%T Generalized weighted Besov spaces on the Gegenbauer hypergroup
%J Commentationes Mathematicae
%D 2014
%P  95-128
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v54i1.765/
%R 10.14708/cm.v54i1.765
%G pl
%F 10_14708_cm_v54i1_765
Elman J. Ibrahimov. Generalized weighted Besov spaces on the Gegenbauer hypergroup. Commentationes Mathematicae, Tome 54 (2014) no. 1, pp.  95-128. doi : 10.14708/cm.v54i1.765. http://geodesic.mathdoc.fr/articles/10.14708/cm.v54i1.765/

Cité par Sources :