Topological properties of the complex vector lattice of bounded finitely additive mesures
Commentationes Mathematicae, Tome 53 (2013) no. 2, p. 371−382.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Let \(\Sigma\) be a \(\sigma\)-algebra of subsets of a non-empty set \(\Omega\). Let \(ba(\Sigma)\) be the complex vector lattice of bounded finitely additive measures \(\mu:\Sigma\rightarrow\mathbb{C}\). We study locally solid topologies on \(ba(\Sigma)\). We develop the duality theory of \(ba(\Sigma)\), provided with locally convex-solid topologies.
DOI : 10.14708/cm.v53i2.797
Mots-clés : complex vector lattices, locally solid topologies, spaces of bounded finitely additive measures
@article{10_14708_cm_v53i2_797,
     author = {Marian Nowak},
     title = {Topological properties of the complex vector lattice of bounded finitely additive mesures},
     journal = {Commentationes Mathematicae},
     pages = { 371\ensuremath{-}382},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2013},
     doi = {10.14708/cm.v53i2.797},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v53i2.797/}
}
TY  - JOUR
AU  - Marian Nowak
TI  - Topological properties of the complex vector lattice of bounded finitely additive mesures
JO  - Commentationes Mathematicae
PY  - 2013
SP  -  371−382
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v53i2.797/
DO  - 10.14708/cm.v53i2.797
LA  - pl
ID  - 10_14708_cm_v53i2_797
ER  - 
%0 Journal Article
%A Marian Nowak
%T Topological properties of the complex vector lattice of bounded finitely additive mesures
%J Commentationes Mathematicae
%D 2013
%P  371−382
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v53i2.797/
%R 10.14708/cm.v53i2.797
%G pl
%F 10_14708_cm_v53i2_797
Marian Nowak. Topological properties of the complex vector lattice of bounded finitely additive mesures. Commentationes Mathematicae, Tome 53 (2013) no. 2, p.  371−382. doi : 10.14708/cm.v53i2.797. http://geodesic.mathdoc.fr/articles/10.14708/cm.v53i2.797/

Cité par Sources :