K-extreme point of generalized orlicz sequence spaces with Luxemburg norm
Commentationes Mathematicae, Tome 53 (2013) no. 2, p. 247−262.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this paper,we give necessary and sufficient conditions in order that a point \(u\in S(l_{({\it \Phi})})\) is a k-extreme point in generalized Orlicz sequence spaces equipped with the Luxemburg norm, combing the methods used in classical Orlicz spaces and new methods introduced especially for generalized ones. The results indicate the difference between the classical Orlicz spaces and generalized Orlicz spaces.
DOI : 10.14708/cm.v53i2.790
Mots-clés : Orlicz function, k-extreme point, linear dependence, Luxemburg norm
@article{10_14708_cm_v53i2_790,
     author = {Zhongrui Shi},
     title = {K-extreme point of generalized orlicz sequence spaces with {Luxemburg} norm},
     journal = {Commentationes Mathematicae},
     pages = { 247\ensuremath{-}262},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2013},
     doi = {10.14708/cm.v53i2.790},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v53i2.790/}
}
TY  - JOUR
AU  - Zhongrui Shi
TI  - K-extreme point of generalized orlicz sequence spaces with Luxemburg norm
JO  - Commentationes Mathematicae
PY  - 2013
SP  -  247−262
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v53i2.790/
DO  - 10.14708/cm.v53i2.790
LA  - pl
ID  - 10_14708_cm_v53i2_790
ER  - 
%0 Journal Article
%A Zhongrui Shi
%T K-extreme point of generalized orlicz sequence spaces with Luxemburg norm
%J Commentationes Mathematicae
%D 2013
%P  247−262
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v53i2.790/
%R 10.14708/cm.v53i2.790
%G pl
%F 10_14708_cm_v53i2_790
Zhongrui Shi. K-extreme point of generalized orlicz sequence spaces with Luxemburg norm. Commentationes Mathematicae, Tome 53 (2013) no. 2, p.  247−262. doi : 10.14708/cm.v53i2.790. http://geodesic.mathdoc.fr/articles/10.14708/cm.v53i2.790/

Cité par Sources :