On /()X\)-convex functions
Commentationes Mathematicae, Tome 53 (2013) no. 2, p. 197−199.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Let \(X\) be a Banach space. Let \(f(\cdot)\) be a real valued function defined on an open convex set \(\Omega \subset X^*\), where \(X^*\) as usual denote the conjugate space. We say that the function \(f(\cdot)\) is \(X$\)convex, if there is a set \(\Phi_f \subset X\) such that $$ f(x^*)= sup_{x \in \Phi_f, r \in \R} x^*(x)+r. \eqno{(1)}$$ In the paper it will be shown that if \(X\) is separable, then the function \(f(\cdot)\) is Frechet differentiable on a dense \(G_{\delta}\) set.
DOI : 10.14708/cm.v53i2.785
Mots-clés : \(X\)-convex functions, Frechet differentiability
@article{10_14708_cm_v53i2_785,
     author = {Stefan Rolewicz},
     title = {On {/()X\)-convex} functions},
     journal = {Commentationes Mathematicae},
     pages = { 197\ensuremath{-}199},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2013},
     doi = {10.14708/cm.v53i2.785},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v53i2.785/}
}
TY  - JOUR
AU  - Stefan Rolewicz
TI  - On /()X\)-convex functions
JO  - Commentationes Mathematicae
PY  - 2013
SP  -  197−199
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v53i2.785/
DO  - 10.14708/cm.v53i2.785
LA  - pl
ID  - 10_14708_cm_v53i2_785
ER  - 
%0 Journal Article
%A Stefan Rolewicz
%T On /()X\)-convex functions
%J Commentationes Mathematicae
%D 2013
%P  197−199
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v53i2.785/
%R 10.14708/cm.v53i2.785
%G pl
%F 10_14708_cm_v53i2_785
Stefan Rolewicz. On /()X\)-convex functions. Commentationes Mathematicae, Tome 53 (2013) no. 2, p.  197−199. doi : 10.14708/cm.v53i2.785. http://geodesic.mathdoc.fr/articles/10.14708/cm.v53i2.785/

Cité par Sources :