Correspondences between ideals and \(z\)-filters for rings of continuous functions between \(C^∗\) and \(C\)
Commentationes Mathematicae, Tome 52 (2012) no. 1, pp. 11-20.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Let \(X\) be a completely regular topological space. Let \(A(X)\) be a ring of continuous functions between \(C^∗(X)\) and \(C(X)\), that is, \(C^∗(X) \subset A(X) \subset C(X)\). In [9], a correspondence \(\mathcal{Z}_A\) between ideals of \(A(X)\) and \(z\)-filters on \(X\) is defined. Here we show that \(\mathcal{Z}_A\) extends the well-known correspondence for \(C^∗(X)\) to all rings \(A(X)\). We define a new correspondence \(\mathcal{Z}_A\) and show that it extends the well-known correspondence for \(C(X)\) to all rings \(A(X)\). We give a formula that relates the two correspondences. We use properties of \(\mathcal{Z}_A\) and \(\mathcal{Z}_A\) to characterize \(C^∗(X)\) and \(C(X)\) among all rings \(A(X)\). We show that \(\mathcal{Z}_A\) defines a one-one correspondence between maximal ideals in \(A(X)\) and the \(z\)-ultrafilters in \(X\).
DOI : 10.14708/cm.v52i1.5323
Mots-clés : Rings of continuous functions, Ideals, \(z\)-filters, Kernel, Hull
@article{10_14708_cm_v52i1_5323,
     author = {Phyllis Panman and Joshua Sack and Saleem Watson},
     title = {Correspondences between ideals and \(z\)-filters for rings of continuous functions between {\(C^\ensuremath{*}\)} and {\(C\)}},
     journal = {Commentationes Mathematicae},
     pages = { 11--20},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2012},
     doi = {10.14708/cm.v52i1.5323},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v52i1.5323/}
}
TY  - JOUR
AU  - Phyllis Panman
AU  - Joshua Sack
AU  - Saleem Watson
TI  - Correspondences between ideals and \(z\)-filters for rings of continuous functions between \(C^∗\) and \(C\)
JO  - Commentationes Mathematicae
PY  - 2012
SP  -  11
EP  - 20
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v52i1.5323/
DO  - 10.14708/cm.v52i1.5323
LA  - pl
ID  - 10_14708_cm_v52i1_5323
ER  - 
%0 Journal Article
%A Phyllis Panman
%A Joshua Sack
%A Saleem Watson
%T Correspondences between ideals and \(z\)-filters for rings of continuous functions between \(C^∗\) and \(C\)
%J Commentationes Mathematicae
%D 2012
%P  11-20
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v52i1.5323/
%R 10.14708/cm.v52i1.5323
%G pl
%F 10_14708_cm_v52i1_5323
Phyllis Panman; Joshua Sack; Saleem Watson. Correspondences between ideals and \(z\)-filters for rings of continuous functions between \(C^∗\) and \(C\). Commentationes Mathematicae, Tome 52 (2012) no. 1, pp.  11-20. doi : 10.14708/cm.v52i1.5323. http://geodesic.mathdoc.fr/articles/10.14708/cm.v52i1.5323/

Cité par Sources :