An approximation theorem in Musielak-Orlicz-Sobolev spaces
Commentationes Mathematicae, Tome 51 (2011) no. 1, pp. 109-120.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this paper we prove the uniform boundedness of the operators of convolution in the Musielak-Orlicz spaces and the density of \(C_0^\infty (\mathbb{R}^n)\) in the Musielak-Orlicz-Sobolev spaces by assuming a condition of Log-Hölder type of continuity.
DOI : 10.14708/cm.v51i1.5313
Mots-clés : Generalized Orlicz-Sobolev spaces, Modular spaces, Musielak-Orlicz function, approximation theorem
@article{10_14708_cm_v51i1_5313,
     author = {A. Benkirane and J. Douieb and M. Ould Mohamedhen Val},
     title = {An approximation theorem in {Musielak-Orlicz-Sobolev} spaces},
     journal = {Commentationes Mathematicae},
     pages = { 109--120},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2011},
     doi = {10.14708/cm.v51i1.5313},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v51i1.5313/}
}
TY  - JOUR
AU  - A. Benkirane
AU  - J. Douieb
AU  - M. Ould Mohamedhen Val
TI  - An approximation theorem in Musielak-Orlicz-Sobolev spaces
JO  - Commentationes Mathematicae
PY  - 2011
SP  -  109
EP  - 120
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v51i1.5313/
DO  - 10.14708/cm.v51i1.5313
LA  - pl
ID  - 10_14708_cm_v51i1_5313
ER  - 
%0 Journal Article
%A A. Benkirane
%A J. Douieb
%A M. Ould Mohamedhen Val
%T An approximation theorem in Musielak-Orlicz-Sobolev spaces
%J Commentationes Mathematicae
%D 2011
%P  109-120
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v51i1.5313/
%R 10.14708/cm.v51i1.5313
%G pl
%F 10_14708_cm_v51i1_5313
A. Benkirane; J. Douieb; M. Ould Mohamedhen Val. An approximation theorem in Musielak-Orlicz-Sobolev spaces. Commentationes Mathematicae, Tome 51 (2011) no. 1, pp.  109-120. doi : 10.14708/cm.v51i1.5313. http://geodesic.mathdoc.fr/articles/10.14708/cm.v51i1.5313/

Cité par Sources :