On common fixed point theorems for semi-compatible mappings in Menger space
Commentationes Mathematicae, Tome 50 (2010) no. 2, pp. 127-139.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this paper, the concept of semi-compatibility and weak compatibility in Menger space has been applied to prove a common fixed point theorem for six self maps. Our result generalizes and extends the result of Pathak and Verma [6].
DOI : 10.14708/cm.v50i2.5179
Mots-clés : Probabilistic metric space, Menger space, common fixed point, compatible maps, semi-compatible maps, weak compatibility
@article{10_14708_cm_v50i2_5179,
     author = {Bijendra Singh and Arihant Jain and Bholaram Lodha},
     title = {On common fixed point theorems for semi-compatible mappings in {Menger} space},
     journal = {Commentationes Mathematicae},
     pages = { 127--139},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2010},
     doi = {10.14708/cm.v50i2.5179},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i2.5179/}
}
TY  - JOUR
AU  - Bijendra Singh
AU  - Arihant Jain
AU  - Bholaram Lodha
TI  - On common fixed point theorems for semi-compatible mappings in Menger space
JO  - Commentationes Mathematicae
PY  - 2010
SP  -  127
EP  - 139
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i2.5179/
DO  - 10.14708/cm.v50i2.5179
LA  - pl
ID  - 10_14708_cm_v50i2_5179
ER  - 
%0 Journal Article
%A Bijendra Singh
%A Arihant Jain
%A Bholaram Lodha
%T On common fixed point theorems for semi-compatible mappings in Menger space
%J Commentationes Mathematicae
%D 2010
%P  127-139
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i2.5179/
%R 10.14708/cm.v50i2.5179
%G pl
%F 10_14708_cm_v50i2_5179
Bijendra Singh; Arihant Jain; Bholaram Lodha. On common fixed point theorems for semi-compatible mappings in Menger space. Commentationes Mathematicae, Tome 50 (2010) no. 2, pp.  127-139. doi : 10.14708/cm.v50i2.5179. http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i2.5179/

Cité par Sources :