Topological properties of spaces of linear operators on non-locally convex Orlicz spaces
Commentationes Mathematicae, Tome 50 (2010) no. 2, pp. 103-108.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

We study the topological properties of the space \(\mathcal{L}(L^\varphi, X)\) of all continuous linear operators from an Orlicz space \(L^\varphi\) (an Orlicz function \(\varphi\) is not necessarily convex) to a Banach space \(X\). We provide the space \(\mathcal{L}(L^\varphi ,X)\) with the Banach space structure. Moreover, we examine the space \(\mathcal{L}_s (L^\varphi, X)\) of all singular operators from \(L^\varphi\) to \(X\).
DOI : 10.14708/cm.v50i2.5176
Mots-clés : Orlicz spaces, linear operators, singular operators
@article{10_14708_cm_v50i2_5176,
     author = {Agnieszka Oelke},
     title = {Topological properties of spaces of linear operators on non-locally convex {Orlicz} spaces},
     journal = {Commentationes Mathematicae},
     pages = { 103--108},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2010},
     doi = {10.14708/cm.v50i2.5176},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i2.5176/}
}
TY  - JOUR
AU  - Agnieszka Oelke
TI  - Topological properties of spaces of linear operators on non-locally convex Orlicz spaces
JO  - Commentationes Mathematicae
PY  - 2010
SP  -  103
EP  - 108
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i2.5176/
DO  - 10.14708/cm.v50i2.5176
LA  - pl
ID  - 10_14708_cm_v50i2_5176
ER  - 
%0 Journal Article
%A Agnieszka Oelke
%T Topological properties of spaces of linear operators on non-locally convex Orlicz spaces
%J Commentationes Mathematicae
%D 2010
%P  103-108
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i2.5176/
%R 10.14708/cm.v50i2.5176
%G pl
%F 10_14708_cm_v50i2_5176
Agnieszka Oelke. Topological properties of spaces of linear operators on non-locally convex Orlicz spaces. Commentationes Mathematicae, Tome 50 (2010) no. 2, pp.  103-108. doi : 10.14708/cm.v50i2.5176. http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i2.5176/

Cité par Sources :