Multivalent Harmonic Functions defined by m-tuple Integral operators
Commentationes Mathematicae, Tome 50 (2010) no. 1, pp. 87-101.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this paper a multivalent harmonic function is defined by m-tuple integral operators and some classes of these multivalent harmonic functions are studied in terms of inequalities involving Wright generalized hypergeometric functions. Some special cases of our results are also mentioned.
DOI : 10.14708/cm.v50i1.5304
Mots-clés : Multivalent Harmonic starlike (convex) functions, Erdélyi-Kober integral operator, Hohlov operator, Carlson and Shaffer operator, convolution, Wright generalized hypergeometric function, Gauss hypergeometric function, incomplete beta function
@article{10_14708_cm_v50i1_5304,
     author = {Poonam Sharma},
     title = {Multivalent {Harmonic} {Functions} defined by m-tuple {Integral} operators},
     journal = {Commentationes Mathematicae},
     pages = { 87--101},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2010},
     doi = {10.14708/cm.v50i1.5304},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i1.5304/}
}
TY  - JOUR
AU  - Poonam Sharma
TI  - Multivalent Harmonic Functions defined by m-tuple Integral operators
JO  - Commentationes Mathematicae
PY  - 2010
SP  -  87
EP  - 101
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i1.5304/
DO  - 10.14708/cm.v50i1.5304
LA  - pl
ID  - 10_14708_cm_v50i1_5304
ER  - 
%0 Journal Article
%A Poonam Sharma
%T Multivalent Harmonic Functions defined by m-tuple Integral operators
%J Commentationes Mathematicae
%D 2010
%P  87-101
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i1.5304/
%R 10.14708/cm.v50i1.5304
%G pl
%F 10_14708_cm_v50i1_5304
Poonam Sharma. Multivalent Harmonic Functions defined by m-tuple Integral operators. Commentationes Mathematicae, Tome 50 (2010) no. 1, pp.  87-101. doi : 10.14708/cm.v50i1.5304. http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i1.5304/

Cité par Sources :