Baire measurable solutions of a generalized Gołąb–Schinzel equation
Commentationes Mathematicae, Tome 50 (2010) no. 1, pp. 69-72.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

J. Brzdęk [1] characterized Baire measurable solutions \(f\colon X \to K\) of the functional equation \[ f (x + f (x)^n y) = f (x)f (y) \] under the assumption that \(X\) is a Fréchet space over the field \(K\) of real or complex numbers and \(n\) is a positive integer. We prove that his result holds even if \(X\) is a linear topological space over \(K\); i.e. completeness and metrizability are not necessary.
DOI : 10.14708/cm.v50i1.5302
Mots-clés : generalized Gołąb–Schinzel equation, net, finer net, Baire measurability
@article{10_14708_cm_v50i1_5302,
     author = {Eliza Jab{\l}o\'nska},
     title = {Baire measurable solutions of a generalized {Go{\l}\k{a}b{\textendash}Schinzel} equation},
     journal = {Commentationes Mathematicae},
     pages = { 69--72},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2010},
     doi = {10.14708/cm.v50i1.5302},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i1.5302/}
}
TY  - JOUR
AU  - Eliza Jabłońska
TI  - Baire measurable solutions of a generalized Gołąb–Schinzel equation
JO  - Commentationes Mathematicae
PY  - 2010
SP  -  69
EP  - 72
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i1.5302/
DO  - 10.14708/cm.v50i1.5302
LA  - pl
ID  - 10_14708_cm_v50i1_5302
ER  - 
%0 Journal Article
%A Eliza Jabłońska
%T Baire measurable solutions of a generalized Gołąb–Schinzel equation
%J Commentationes Mathematicae
%D 2010
%P  69-72
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i1.5302/
%R 10.14708/cm.v50i1.5302
%G pl
%F 10_14708_cm_v50i1_5302
Eliza Jabłońska. Baire measurable solutions of a generalized Gołąb–Schinzel equation. Commentationes Mathematicae, Tome 50 (2010) no. 1, pp.  69-72. doi : 10.14708/cm.v50i1.5302. http://geodesic.mathdoc.fr/articles/10.14708/cm.v50i1.5302/

Cité par Sources :