Uniform non-\(\ell^n_1\)-ness of \(\ell_\infty\)-sums of Banach spaces
Commentationes Mathematicae, Tome 49 (2009) no. 2, pp. 179-187.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

We shall characterize the uniform non-\(\ell^n_1\)-ness of \(\ell_\infty\)-sums of Banach spaces \((X_1 \oplus \dots\oplus X_m)_\infty\). As applications, some results on super-reflexivity and the fixed point property for nonexpansive mappings will be presented.
DOI : 10.14708/cm.v49i2.5294
Mots-clés : \(\ell_\infty\)-sum of Banach spaces, uniformly non-square space, uniformly non-\(\ell^n_1\)-space, super-reflexivity, fixed point property, constant \(R(a, X)\).
@article{10_14708_cm_v49i2_5294,
     author = {Mikio Kato and Takayuki Tamura},
     title = {Uniform non-\(\ell^n_1\)-ness of \(\ell_\infty\)-sums of {Banach} spaces},
     journal = {Commentationes Mathematicae},
     pages = { 179--187},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2009},
     doi = {10.14708/cm.v49i2.5294},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v49i2.5294/}
}
TY  - JOUR
AU  - Mikio Kato
AU  - Takayuki Tamura
TI  - Uniform non-\(\ell^n_1\)-ness of \(\ell_\infty\)-sums of Banach spaces
JO  - Commentationes Mathematicae
PY  - 2009
SP  -  179
EP  - 187
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v49i2.5294/
DO  - 10.14708/cm.v49i2.5294
LA  - pl
ID  - 10_14708_cm_v49i2_5294
ER  - 
%0 Journal Article
%A Mikio Kato
%A Takayuki Tamura
%T Uniform non-\(\ell^n_1\)-ness of \(\ell_\infty\)-sums of Banach spaces
%J Commentationes Mathematicae
%D 2009
%P  179-187
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v49i2.5294/
%R 10.14708/cm.v49i2.5294
%G pl
%F 10_14708_cm_v49i2_5294
Mikio Kato; Takayuki Tamura. Uniform non-\(\ell^n_1\)-ness of \(\ell_\infty\)-sums of Banach spaces. Commentationes Mathematicae, Tome 49 (2009) no. 2, pp.  179-187. doi : 10.14708/cm.v49i2.5294. http://geodesic.mathdoc.fr/articles/10.14708/cm.v49i2.5294/

Cité par Sources :