Voronovskaya-Type Theorems for Derivatives of the Bernstein-Chlodovsky Polynomials and the Szász-Mirakyan Operator
Commentationes Mathematicae, Tome 49 (2009) no. 1, pp. 33-58.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

This paper is devoted to a study of a Voronovskaya-type theorem for the derivative of the Bernstein–Chlodovsky polynomials and to a comparison of its approximation effectiveness with the corresponding theorem for the much better-known Szász–Mirakyan operator. Since the Chlodovsky polynomials contain a factor \(b_n\) tending to infinity having a certain degree of freedom, these polynomials turn out to be generally more efficient in approximating the derivative of the associated function than does the Szász operator. Moreover, whereas Chlodovsky polynomials apply to functions which are even of order \(O(\text{exp}(x^p))\) for any \(p\geq 1\), the Szász–Mirakyan operator does so only for \(p = 1\); it diverges for \(p \gt 1\). The proofs employ but refine practical methods used by Jerzy Albrycht and Jerzy Radecki (in papers which are almost never cited ) as well as by further mathematicians from the great Poznań school.
DOI : 10.14708/cm.v49i1.5277
Mots-clés : Bernstein–Chlodovsky polynomials, Szász–Mirakyan operator, Favard operator, Voronovskaya-type theorems
@article{10_14708_cm_v49i1_5277,
     author = {Paul Leo Butzer and Harun Karsli},
     title = {Voronovskaya-Type {Theorems} for {Derivatives} of the {Bernstein-Chlodovsky} {Polynomials} and the {Sz\'asz-Mirakyan} {Operator}},
     journal = {Commentationes Mathematicae},
     pages = { 33--58},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2009},
     doi = {10.14708/cm.v49i1.5277},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v49i1.5277/}
}
TY  - JOUR
AU  - Paul Leo Butzer
AU  - Harun Karsli
TI  - Voronovskaya-Type Theorems for Derivatives of the Bernstein-Chlodovsky Polynomials and the Szász-Mirakyan Operator
JO  - Commentationes Mathematicae
PY  - 2009
SP  -  33
EP  - 58
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v49i1.5277/
DO  - 10.14708/cm.v49i1.5277
LA  - pl
ID  - 10_14708_cm_v49i1_5277
ER  - 
%0 Journal Article
%A Paul Leo Butzer
%A Harun Karsli
%T Voronovskaya-Type Theorems for Derivatives of the Bernstein-Chlodovsky Polynomials and the Szász-Mirakyan Operator
%J Commentationes Mathematicae
%D 2009
%P  33-58
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v49i1.5277/
%R 10.14708/cm.v49i1.5277
%G pl
%F 10_14708_cm_v49i1_5277
Paul Leo Butzer; Harun Karsli. Voronovskaya-Type Theorems for Derivatives of the Bernstein-Chlodovsky Polynomials and the Szász-Mirakyan Operator. Commentationes Mathematicae, Tome 49 (2009) no. 1, pp.  33-58. doi : 10.14708/cm.v49i1.5277. http://geodesic.mathdoc.fr/articles/10.14708/cm.v49i1.5277/

Cité par Sources :