On constructions of isometric embeddings of nonseparable \(L^p\) spaces, \(0 \lt p \leq 2\)
Commentationes Mathematicae, Tome 48 (2008) no. 2, pp. 129-145.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Let \(J\) be an infinite set. Let \(X\) be a real or complex \(\sigma\)-order continuous rearrangement invariant quasi-Banach function space over \((\{0, 1\}^J,\ \mathcal{B}^J,\ \lambda_J)\), the product of \(J\) copies of the measure space \((\{0, 1\},\ 2^{0,1},\ \frac{1}{2} \delta_0 + \frac{1}{2}\delta_1)\). We show that if \(0 \lt p \lt 2\) and \(X\) contains a function \(f\) with the decreasing rearrangement \(f^∗\) such that \(f^∗(t) \gt t^{-\frac{1}{p}}\) for every \(t\in (0, 1)\), then it contains an isometric copy of the Lebesgue space \(L^p (\lambda_J)\). Moreover, if \(X\) contains a function \(f\) such that \(f^∗(t) \gt \sqrt{|\text{ln}(t)|}\) for every \(t\in (0, 1)\), then it contains an isometric copy of the Lebesgue space \(L^2(\lambda_J)\).
DOI : 10.14708/cm.v48i2.5267
Mots-clés : \(L^p\)-spaces
@article{10_14708_cm_v48i2_5267,
     author = {Jolanta Grala-Michalak and Artur Michalak},
     title = {On constructions of isometric embeddings of nonseparable {\(L^p\)} spaces, \(0 \lt p \leq 2\)},
     journal = {Commentationes Mathematicae},
     pages = { 129--145},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2008},
     doi = {10.14708/cm.v48i2.5267},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v48i2.5267/}
}
TY  - JOUR
AU  - Jolanta Grala-Michalak
AU  - Artur Michalak
TI  - On constructions of isometric embeddings of nonseparable \(L^p\) spaces, \(0 \lt p \leq 2\)
JO  - Commentationes Mathematicae
PY  - 2008
SP  -  129
EP  - 145
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v48i2.5267/
DO  - 10.14708/cm.v48i2.5267
LA  - pl
ID  - 10_14708_cm_v48i2_5267
ER  - 
%0 Journal Article
%A Jolanta Grala-Michalak
%A Artur Michalak
%T On constructions of isometric embeddings of nonseparable \(L^p\) spaces, \(0 \lt p \leq 2\)
%J Commentationes Mathematicae
%D 2008
%P  129-145
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v48i2.5267/
%R 10.14708/cm.v48i2.5267
%G pl
%F 10_14708_cm_v48i2_5267
Jolanta Grala-Michalak; Artur Michalak. On constructions of isometric embeddings of nonseparable \(L^p\) spaces, \(0 \lt p \leq 2\). Commentationes Mathematicae, Tome 48 (2008) no. 2, pp.  129-145. doi : 10.14708/cm.v48i2.5267. http://geodesic.mathdoc.fr/articles/10.14708/cm.v48i2.5267/

Cité par Sources :