An infinite dimensional Banach algebra with all but one maximal abelian subalgebras of dimension two
Commentationes Mathematicae, Tome 48 (2008) no. 1, pp. 99-101.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

I construct a unital closed subalgebra of \(L(H)\) with the property announced in the title. Moreover, for any two maxiamal abelian subalgebras of the algebra in question, their intersection consists only of scalar multiples of the unity.
DOI : 10.14708/cm.v48i1.5263
Mots-clés : Abelian algebra, Bounded operators, Complex Banach space
@article{10_14708_cm_v48i1_5263,
     author = {Wies{\l}aw \.Zelazko},
     title = {An infinite dimensional {Banach} algebra with all but one maximal abelian subalgebras of dimension two},
     journal = {Commentationes Mathematicae},
     pages = { 99--101},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2008},
     doi = {10.14708/cm.v48i1.5263},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v48i1.5263/}
}
TY  - JOUR
AU  - Wiesław Żelazko
TI  - An infinite dimensional Banach algebra with all but one maximal abelian subalgebras of dimension two
JO  - Commentationes Mathematicae
PY  - 2008
SP  -  99
EP  - 101
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v48i1.5263/
DO  - 10.14708/cm.v48i1.5263
LA  - pl
ID  - 10_14708_cm_v48i1_5263
ER  - 
%0 Journal Article
%A Wiesław Żelazko
%T An infinite dimensional Banach algebra with all but one maximal abelian subalgebras of dimension two
%J Commentationes Mathematicae
%D 2008
%P  99-101
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v48i1.5263/
%R 10.14708/cm.v48i1.5263
%G pl
%F 10_14708_cm_v48i1_5263
Wiesław Żelazko. An infinite dimensional Banach algebra with all but one maximal abelian subalgebras of dimension two. Commentationes Mathematicae, Tome 48 (2008) no. 1, pp.  99-101. doi : 10.14708/cm.v48i1.5263. http://geodesic.mathdoc.fr/articles/10.14708/cm.v48i1.5263/

Cité par Sources :