Duality and some topological properties of vector-valued function spaces
Commentationes Mathematicae, Tome 48 (2008) no. 1, pp. 23-43.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Let \(E\) be an ideal of \(L^0\) over \(\sigma\)-finite measure space \((\Omega, \Sigma, \mu)\) and let \((X, \| \cdot \|_X)\) be a real Banach space. Let \(E(X)\) be a subspace of the space \(L^0(X)\) of \(\mu\)-equivalence classes of all strongly \(\Sigma\)-measurable functions \(f\colon \Omega \to X\) and consisting of all those \(f\in L^0(X)\), for which the scalar function \(\tilde{f} = \|f (\cdot)\|_X\) belongs to \(E\). Let \(E\) be equipped with a Hausdorff locally convex-solid topology \(\xi\) and let \(\xi\) stand for the topology on \(E(X)\) associated with \(\xi\). We examine the relationship between the properties of the space \((E(X), \xi)\) and the properties of both the spaces \((E, \xi)\) and \((X, \|· \|_X)\). In particular, it is proved that \(E(X)\) (embedded in a natural way) is an order closed ideal of its bidual iff \(E\) is an order closed ideal of its bidual and \(X\) is reflexive. As an application, we obtain that \(E(X)\) is perfect iff \(E\) is perfect and \(X\) is reflexive.
DOI : 10.14708/cm.v48i1.5257
Mots-clés : vector-valued function spaces, locally solid topologies, KB-spaces, Levy topologies, Lebesgue topologies, order dual, order continuous dual, perfectness
@article{10_14708_cm_v48i1_5257,
     author = {Krzysztof Feledziak},
     title = {Duality and some topological properties of vector-valued function spaces},
     journal = {Commentationes Mathematicae},
     pages = { 23--43},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2008},
     doi = {10.14708/cm.v48i1.5257},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v48i1.5257/}
}
TY  - JOUR
AU  - Krzysztof Feledziak
TI  - Duality and some topological properties of vector-valued function spaces
JO  - Commentationes Mathematicae
PY  - 2008
SP  -  23
EP  - 43
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v48i1.5257/
DO  - 10.14708/cm.v48i1.5257
LA  - pl
ID  - 10_14708_cm_v48i1_5257
ER  - 
%0 Journal Article
%A Krzysztof Feledziak
%T Duality and some topological properties of vector-valued function spaces
%J Commentationes Mathematicae
%D 2008
%P  23-43
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v48i1.5257/
%R 10.14708/cm.v48i1.5257
%G pl
%F 10_14708_cm_v48i1_5257
Krzysztof Feledziak. Duality and some topological properties of vector-valued function spaces. Commentationes Mathematicae, Tome 48 (2008) no. 1, pp.  23-43. doi : 10.14708/cm.v48i1.5257. http://geodesic.mathdoc.fr/articles/10.14708/cm.v48i1.5257/

Cité par Sources :