Uniform non-\(\ell_1^n\)-ness of \(\ell_1\)-sums of Banach spaces
Commentationes Mathematicae, Tome 47 (2007) no. 2, pp. 161-169.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

We shall characterize the uniform non-\(\ell_1^n\)-ness of the \(\ell_1\)-sum \((X_1 \oplus\dots\oplus X_m)_1\) of a finite number of Banach spaces \(X_1 ,\dots, X_m\). Also we shall obtain that \((X_1 \oplus \dots \oplus X_m)_1\) is uniformly non-\(\ell_1^{m+1}\) if and only if all \(X_1 ,\dots , X_m\) are uniformly non-square (note that \((X_1 \oplus \dots \oplus X_m)_1\) is not uniformly non-\(\ell_1^m\)). Several related results will be presented.
DOI : 10.14708/cm.v47i2.5246
Mots-clés : \(\ell_1\)-sum of Banach spaces, uniformly non-square space, uniformly non-\(\ell_1^n\)-space, super-reflexivity, fixed point property
@article{10_14708_cm_v47i2_5246,
     author = {Mikio Kato and Takayuki Tamura},
     title = {Uniform non-\(\ell_1^n\)-ness of \(\ell_1\)-sums of {Banach} spaces},
     journal = {Commentationes Mathematicae},
     pages = { 161--169},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2007},
     doi = {10.14708/cm.v47i2.5246},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v47i2.5246/}
}
TY  - JOUR
AU  - Mikio Kato
AU  - Takayuki Tamura
TI  - Uniform non-\(\ell_1^n\)-ness of \(\ell_1\)-sums of Banach spaces
JO  - Commentationes Mathematicae
PY  - 2007
SP  -  161
EP  - 169
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v47i2.5246/
DO  - 10.14708/cm.v47i2.5246
LA  - pl
ID  - 10_14708_cm_v47i2_5246
ER  - 
%0 Journal Article
%A Mikio Kato
%A Takayuki Tamura
%T Uniform non-\(\ell_1^n\)-ness of \(\ell_1\)-sums of Banach spaces
%J Commentationes Mathematicae
%D 2007
%P  161-169
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v47i2.5246/
%R 10.14708/cm.v47i2.5246
%G pl
%F 10_14708_cm_v47i2_5246
Mikio Kato; Takayuki Tamura. Uniform non-\(\ell_1^n\)-ness of \(\ell_1\)-sums of Banach spaces. Commentationes Mathematicae, Tome 47 (2007) no. 2, pp.  161-169. doi : 10.14708/cm.v47i2.5246. http://geodesic.mathdoc.fr/articles/10.14708/cm.v47i2.5246/

Cité par Sources :