On the almost periodic functions in the sense of Levitan
Commentationes Mathematicae, Tome 47 (2007) no. 2, pp. 149-159.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

In this note we present some theorems on the superposition of an \((NV_p)\)-almost periodic (a.p. for short) function, a \(\mu\)-a.p. function and an \((N\mu)\)-a.p. function. Moreover, we prove a theorem on the bounded primary function of an \((NS_p)\)-a.p. function. Finally, we prove that the inverse of a \(V_p\)-a.p. function is \((NV_p)\)-a.p.
DOI : 10.14708/cm.v47i2.5245
Mots-clés : almost periodic function, superposition, primary function, Lebesgue measure
@article{10_14708_cm_v47i2_5245,
     author = {Adrian Micha{\l}owicz and Stanis{\l}aw Stoi\'nski},
     title = {On the almost periodic functions in the sense of {Levitan}},
     journal = {Commentationes Mathematicae},
     pages = { 149--159},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2007},
     doi = {10.14708/cm.v47i2.5245},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v47i2.5245/}
}
TY  - JOUR
AU  - Adrian Michałowicz
AU  - Stanisław Stoiński
TI  - On the almost periodic functions in the sense of Levitan
JO  - Commentationes Mathematicae
PY  - 2007
SP  -  149
EP  - 159
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v47i2.5245/
DO  - 10.14708/cm.v47i2.5245
LA  - pl
ID  - 10_14708_cm_v47i2_5245
ER  - 
%0 Journal Article
%A Adrian Michałowicz
%A Stanisław Stoiński
%T On the almost periodic functions in the sense of Levitan
%J Commentationes Mathematicae
%D 2007
%P  149-159
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v47i2.5245/
%R 10.14708/cm.v47i2.5245
%G pl
%F 10_14708_cm_v47i2_5245
Adrian Michałowicz; Stanisław Stoiński. On the almost periodic functions in the sense of Levitan. Commentationes Mathematicae, Tome 47 (2007) no. 2, pp.  149-159. doi : 10.14708/cm.v47i2.5245. http://geodesic.mathdoc.fr/articles/10.14708/cm.v47i2.5245/

Cité par Sources :